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ABSTRACT
Liveness properties do, in general, not hold in the Dolev-Yao
attacker model, unless we assume that certain communica-
tion channels are resilient, i.e. they do not lose messages.
The resilient channels assumption can be seen as a fairness
constraint for the Dolev-Yao attacker model. Here we study
the complexity of expressing such fairness constraints for
the most common interpretation of the Dolev-Yao model, in
which the attacker is the communication medium. We give
reference models which describe how resilient channels be-
have, with unbounded and bounded communication buffers.
Then we show that, for checking liveness security require-
ments, any fairness constraint that makes this common in-
terpretation of the Dolev-Yao model sound and complete
w.r.t. the unbounded (resp. bounded) reference model is not
an ω-regular (resp. locally testable) language. These results
stem from the complexity of precisely capturing the behavior
of resilient channels, and indicate that verification of liveness
security requirements in this interpretation of the Dolev-Yao
model cannot be automated efficiently.

1. INTRODUCTION
Many security requirements studied in the literature can

be encoded as safety properties, cf. [19]. Nonetheless, in this
paper we are concerned with security requirements which are
liveness properties. Timeliness for contract signing proto-
cols is such a requirement. Timeliness stipulates that each
honest participant of the protocol is able to unilaterally (i.e.
with no help from the opponent) terminate the protocol [5].
In message passing settings, distributed algorithms do not

satisfy any (non-trivial) liveness property if transmitted mes-
sages can be destroyed, cf. Gray’s generals paradox. There-
fore, distributed algorithms which aim at liveness properties
rely upon communication channels that guarantee some level
of fairness, e.g. channels are fair lossy [17]. Similarly, con-
tract signing protocols, which aim at timeliness, assume that
(a subset of) the communication channels in the system are
resilient. A resilient channel guarantees to eventually deliver
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all the messages that are sent to it [5].
Assuming that a channel is resilient does not prevent the

attacker from writing to, and reading from, the channel, or
delaying messages and changing the order between them.
But, it does prevent the attacker from destroying commu-
nicated messages. This is incongruent with the (standard)
Dolev-Yao attacker model [10], in which the attacker can
stop the communication permanently. Resilient channels are
however justified by noting that in practice two principals
who are willing to communicate can eventually establish a
(fair lossy) channel, despite the attacker’s obstructions. For
instance, in wireless networks, given that jamming is only lo-
cally sustainable, the principals can always move to an area
where they can send and receive messages. Ultimately if the
principals fail to properly establish a channel over computer
networks, they can resort to other communication means,
e.g. postal services, which are reliable and protected by law.

Physical fairness assumptions, such as resilient channels,
must be reflected in the formalizations of the security pro-
tocols that aim at liveness goals. In particular, the resilient
channels assumption can be seen as a fairness constraint for
the attacker model. Informally, a fairness constraint is a fil-
ter, which excludes certain executions of the model from fur-
ther analyzes. These excluded executions represent “unreal-
istic” behaviors in the model that do not reflect the actual
system under study. Intuitively, a fairness constraint that
formalizes the resilient channels assumption would filter out
all the executions in which the attacker destroys messages
over a resilient channel.

When adding fairness constraints to attacker models, some
level of caution is necessary for checking liveness properties.
Consider, for instance, the situation when the agent Alice
wants to send a message m to the agent Bob. Bob, on the
other hand, wants to receive the message h(m), where h is
a public hash function. When Bob receives h(m) he per-
forms a certain action α. We are interested in the following
liveness property: α eventually occurs. Now we add the
Dolev-Yao attacker and fair scheduling assumption to the
system. The attacker learns m, and the fair scheduling as-
sumption “forces” the attacker to eventually generate h(m)
and send it to Bob, who will then perform α. This is clearly
unsound for the aforementioned liveness property, since Bob
would never perform α in the system without the attacker.

In general, given an attacker model A, one can ask for
fairness assumptions that, if added to A, results in a sound
system (w.r.t. a certain reference model). This is the cen-
tral question of our paper. More precisely, we focus on a
particular interpretation (or abstraction) of the Dolev-Yao



attacker model, referred to as I in the following, and study
the complexity of expressing fairness constraints (seen as for-
mal languages) which if added to I would correctly reflect
the resilient channels assumption. In interpretation I, the
attacker plays the role of the communication media. Our
study is targeted at this interpretation because it has been
extensively used in the existing algorithms and tools for au-
tomatic verification of (safety) security properties; see our
related work, below.
In interpretation I, send actions of honest participants are

modeled by adding the transmitted messages to the knowl-
edge of the attacker, and receive actions of honest partici-
pants correspond to checking whether the messages, which
are to be received, belong to the closure of the attacker’s
knowledge under certain deduction rules (which often reflect
the ideal cryptography assumption). Therefore, the attacker
does not perform any “actions” explicitly; all the attacker
does is captured via modifying and checking its knowledge
set. This feature of interpretation I is of paramount signifi-
cance to automatic verification of security protocols, as the
attacker is tightly coupled with the honest participants and
would therefore generate only the messages that can be pos-
sibly consumed by the participants [8, 20, 7]. This reduces
the (infinite) space of the messages that must be searched
for establishing or refuting existence of flaws in security pro-
tocols. We remark that the algorithms of [8, 20, 7] are not
tailored towards checking security requirements which can
be expressed as liveness properties.

Contributions.
Our study defines a reference model that is meant to re-

flect the actual hostile environment in which security proto-
cols are executed; namely, where the communication buffer
is external to the attacker process, albeit being fully con-
trolled by it. In our reference model, hereafter called Rn,
there is a bound n ∈ N+∪{∞} on the capacity of the commu-
nication buffer, with N+ = N\{0}. We consider two distinct
cases: (1) when n = ∞, i.e. the model R∞, the communica-
tion media is an unbounded buffer, and (2) when n ∈ N+,
the size of the communication buffer is finite. The resilient
channels assumption can be added to the reference model
by imposing a standard fair scheduling constraint, which
accepts an execution as fair iff all the honest processes have
fully progressed through their local algorithms. 1

Then, we investigate a common interpretation (or, ab-
straction) of the Dolev-Yao model, namely interpretation I,
in which the attacker is the communication media. We ask
which fairness constraints can be added to interpretation I

so that the resulting model would be sound and complete
w.r.t. the reference model, for checking liveness security re-
quirements. Soundness, informally, means that any liveness
property that holds in the interpretation also holds in the
reference model, and completeness means that any liveness
property that holds in the reference model also holds in
the interpretation. Soundness and completeness of inter-
pretation I under a fairness assumption would entail that

1Modeling resilient channels (as fairness constraints in the
Dolev-Yao attacker) cannot be simplified to “each submit-
ted message should be received”. This is because if, in an
execution a (malicious) process submits a message which is
not deliverable, i.e. no process would receive it, then that
execution should not be excluded by the fairness constraint
from further analyses.

the fairness assumption correctly reflects the behavior of re-
silient channels in I, according to the reference model. These
notions are made precise in the paper.

We prove that if a fairness constraint makes the inter-
pretation I sound and complete w.r.t. the reference model
with unbounded communication buffers (i.e. R∞), then it
is not an ω-regular language. Expressing such fairness con-
straints would therefore fall beyond temporal logics, such as
ltl and ctl∗, which are typically used for specifying fair-
ness constraints in automated verification algorithms and
tools. Similarly, we show that if a fairness constraint makes
the interpretation I sound and complete w.r.t. the reference
model with bounded communication buffers (e.g. R1), then
it is not a locally-testable language. The Locally testable lan-
guages is a proper subset of star-free regular languages [18],
which in turn are as expressive as ltl confined to finite se-
quences [11].

On the positive side, the very same feature of the inter-
pretation I, which results in the high complexity of fairness
constraints, plays a favorable role in verification of protocols
with bounded buffers. Namely, we prove that if a liveness
property holds in a protocol with buffer capacity n, it will
also hold when buffers have capacity larger than n. The
result allows deriving general security guarantees from ver-
ification of small bounded models. These notions are made
precise in the paper.

Our study is orthogonal to the ideal cryptography assump-
tion, often associated to the Dolev-Yao threat model.

Related work.
Formal verification of liveness in security protocols has

been mostly limited to properties of the family of optimistic
fair exchange protocols, which subsumes contract signing
protocols. Detecting non-termination in these protocols is
challenging, e.g. see [13] for a subtle attack undermining the
termination of a protocol proposed by Zhou et al., and see [5]
for identifying non-termination problems in various existing
protocols.

Notable examples of automated symbolic verification of
liveness properties of optimistic fair exchange protocols are
Kremer and Raskin’s game-based semantics [15], Kähler,
Küsters and Truderung’s decision procedure for certain game-
based properties (comprising those formalized in [15]) for a
large class of security protocols [14], Armando, Carbone and
Compagna’s encoding of contract signing requirements in
ltl [4], andWei and Heather’s work [24] on (semi-automated)
verification of optimistic fair exchange protocols in the PVS
proof checker using the stable failures semantics of CSP.
These works all devise fairness constraints which are appli-
cable to a particular setting, and do not consider the ex-
pressive complexity of fairness constraints required for the
Dolev-Yao attacker model, in general. Liveness properties
have been omitted from symbolic verifications in a number
of other works, e.g. Bella and Paulson’s [6] formalization of
non-repudiation protocols in Isabelle/HOL, and Abadi and
Blanchet’s verification of a certified email protocol [1].

In the computational setting, Cortier, Küsters and Warin-
schi [9] study fair scheduling for branching security proto-
cols, e.g. optimistic contract signing protocols, with branch-
ing properties. Since the attacker is a legitimate (and indis-
pensable) participant in these protocols, a scheduler external
to the attacker is considered. A fair scheduler process can
stop only when no other process (honest, attacker, buffers,



etc.) can take any further action. As the scheduler does not
“know” whether a process can take actions or not, before
giving it the turn, it follows that there exist protocols for
which no fair scheduler can be found.

Structure of the paper.
Preliminary notions are introduced in Section 2. In Sec-

tion 3, we define the reference models. Interpretation I is
formalized in Section 4. Section 5 concerns the complexity
of fairness constraints for interpretation I. There the main
results of the paper are proved. Section 6 focuses on sound
abstractions for bounded communication buffers in the pres-
ence of the attacker. Section 7 concludes the paper.

2. PRELIMINARIES

Properties, safety and liveness.
For a finite set of symbols Σ, we write Σ∗ for the set of

all finite sequences of elements of Σ, containing the empty
sequence ǫ. We let Σ+ = Σ∗ \ {ǫ}. An infinite sequence σ
on Σ is a total function σ : N → Σ. The set of all infinite
sequences on Σ is denoted Σω. The concatenation of two
sequences σ ∈ Σ∗ and σ′ ∈ Σ∗ ∪Σω is denoted by σ ·σ′. For
σ ∈ Σ∗ and σ′ ∈ Σ∗ ∪Σω, we write σ ≤ σ′ if σ is a prefix of
σ′, i.e. ∃σ′′ ∈ Σ∗ ∪ Σω. σ′ = σ · σ′′.
A property on Σω is a subset of Σω. 2 Properties can be

divided into two general classes: safety properties (stating
that something bad will never occur) and liveness proper-
ties (stipulating that something good will eventually occur).
Formally, a property φ is a safety property on Σω iff φ can
be violated in finite time: ∀σ ∈ Σω. σ 6∈ φ =⇒ ∃σ′ ≤
σ.∀σ′′ ∈ Σω. σ′ · σ′′ 6∈ φ. A property φ is a liveness prop-
erty on Σω iff any finite trace can be extended so that it
satisfies φ: ∀σ ∈ Σ∗.∃σ′ ∈ Σω. σ · σ′ ∈ φ. Any property
can be written as the intersection of a safety and a liveness
property [3].
A property φ ⊆ Σω is said to saturate an equivalence

relation E on Σω iff, for any equivalence class cE of the
relation, either cE ⊆ φ or cE ∩ φ = ∅. That is, a property
saturates an equivalence relation, if it is a property of the
equivalence classes of the relation. The notion of saturation
is later used to define when a property is not sensitive to
(finite) occurrences of certain symbols.

Processes and protocols.
A security protocol consists of a finite number of honest

processes, and an attacker which comprises all corrupted
parties and controls the communication media. Below, we
give a simple syntax and semantics to honest processes,
which is a subset of basic CCS process algebra with pre-
fix iteration [2]. Various attacker models are formalized in
the subsequent sections.
Fix a finite alphabet of actions A, not containing the silent

action τ , and set Aτ = A ∪ {τ}. We assume that A can be
partitioned into three disjoint subsets; atom = {a1, · · · , an},
atom

′ = {a′ | a ∈ atom} and atomA = {i(a), d(a) | a ∈
atom}. Intuitively, a ∈ atom denotes a send action and a′

is the corresponding receive action. The actions i(a) and
d(a) are attacker-specific and they are not directly visible to

2This notion of “first order trace properties” does not cover,
e.g., information flow control requirements which concern
sets of traces, hence being “higher order”.

α · P
α
→ P α∗ · P

α
→ α∗ · P

P
α′

→ P ′

α∗ · P
α′

→ P ′

Figure 1: Operational semantics for regular pro-

cesses

honest processes. Informally, they denote inserting/deleting
messages to/from the communication buffer. This formal-
ization amounts to a finite fixed set of messages being com-
municated among participants. We thus use the terms mes-
sage and action symbol interchangeably.

Remark 1. Formal specification languages for security
protocols typically allow variable binding to facilitate receiv-
ing an unbounded number of possible messages. These are
deliberately omitted in our formalization, in order to sim-
plify the presentation. Using a simple model for honest pro-
cesses benefits us in two ways: First, it greatly simplifies
our formalization, and helps to present the main ideas of
the paper without unnecessary cluttering. Second, any spec-
ification language used for realistic security protocols needs
to include the minimal expressiveness of our setting. There-
fore, the complexity results discussed here persist when such
richer languages are used.

A labeled transition system (LTS) is a tuple (P, P 0,→),
where P is a set of states (or processes), P 0 ∈ P is the initial
state, and → ∈ P × A × P is the transition relation. We
write P

a
→ Q for (P, a,Q) ∈ →. This notation is extended

to P
ξ
→ Q for ξ ∈ A+. An LTS is deterministic, iff for any

P ∈ P and a ∈ A, we have P
a
→ Q ∧ P

a
→ Q′ =⇒ Q = Q′.

An execution of P ∈ P is an infinite sequence of elements
of A that results from unrolling P w.r.t. the transition re-
lation →. As a convention, terminating executions (ending
in a deadlock state) are extended to infinite executions by
repeating τ at the end of the execution, cf. [3]. For instance,

if P
a
→ Q, such that ¬∃Q′, a. Q

a
→ Q′, then a · τω is an

execution of P , where τω is an infinite sequence of τs. An
execution belongs to L = (P, P 0,→) iff it is an execution
of P 0.

The set of regular processes is defined inductively as: 0

is a regular process; if P is a regular process, then so are
α ·P and α∗ ·P , with α ∈ atom∪ atom

′. The semantics of a
regular process is an LTS defined according to the rules given
in Figure 1, where P and P ′ are place-holders for processes,
and α and α′ are place-holders for actions. Note that 0 can
perform no actions, and no action from atomA appears in
regular processes. A process P and its corresponding LTS
are used interchangeably throughout the paper.

Remark 2. The operational semantics for regular pro-
cesses is a mixture of small step and big step rules. This
avoids using the silent action τ in the semantics of regular
processes, and moreover enables us to define regular pro-
cesses with non-terminating behaviors. Namely any process
of the form a∗·0 admits only the infinite execution aω, cf. [2].
Indeed, contract signing protocols typically assume trustees
who must reply to an unbounded number of (dispute resolu-
tion) requests [5].

Next we introduce a notion of honest processes. A proto-
col describes a finite set of honest processesH = {P1, · · · , Pn}



satisfying the following conditions: (1) Any honest process
Pi ∈ H is a deterministic regular process. (2) For any two
processes Pi, Pj ∈ H, with i 6= j, the set of actions appearing
in Pi and Pj are disjoint. We focus on protocols consisting of
two honest processes. The results can however be extended
to any number of honest processes.
A process P satisfies the property φ, denoted P |= φ, iff

the set of executions of P is a subset of φ. A process P1

is a sound abstraction for process P2 w.r.t. property φ iff
P1 |= φ =⇒ P2 |= φ. Process P1 is a complete abstraction
for process P2 w.r.t. property φ iff P2 |= φ =⇒ P1 |= φ.

The Dolev-Yao (DY) attacker model.
The attacker model envisaged by Dolev and Yao [10] in-

tercepts and remembers all messages that have been com-
municated. It can decompose messages, and compose new
messages from its knowledge and inject them into the com-
munication media; in particular, it can decrypt, encrypt and
sign messages, if it knows the corresponding key. It can also
remove or delay messages in favor of others being communi-
cated.
We make minimal assumptions on inference capabilities

of the DY attacker. For a set X ⊆ atom, let C(X) be
the set of actions that the attacker can perform (or, the
set of messages that the attacker can construct) knowing
X. We do not explicitly specify C. Instead, we require
C : 2atom → 2atom to conform to the following conditions
for any X,Y ⊆ atom: (1) Proximity : X ⊆ C(X) and (2)
Monotonicity : X ⊆ Y =⇒ C(X) ⊆ C(Y ). We also assume
that there is a message λ in C(∅), that does not appear
in honest processes. This λ may denote a random dummy
message generated by the attacker (as in Example 1, below).

Fairness constraints.
Enforcing fairness constraints is in general unavoidable

when checking liveness properties. Below, we define a fair-
ness constraint that selects only those executions of an LTS
L in which, if an honest process is ready to perform an action
infinitely often, then it also executes that action infinitely of-
ten. This, intuitively, means that no individual process is
indefinitely ignored.
Take the deterministic LTS L = (P, P 0,→). Given an ex-

ecution σ in L, write S(σ) for the unique sequence of states
that σ visits (uniqueness of S(σ) follows from L being de-
terministic). To refer to the ith action of σ, we write σi,
and similarly S(σ)i is the ith state in the sequence S(σ).
For P ∈ P, the set of actions that are enabled at P is
en(P ) = {a ∈ A | ∃P ′ ∈ P. P

a
→ P ′}.

Definition 1 (Fair scheduling F). For a determin-
istic LTS L = (P, P 0,→), and σ an execution of L, we say
σ is a fair execution according to F iff

∀a ∈ A \ atomA. {i | a ∈ en(S(σ)i)} is infinite =⇒
{i | a = σi} is infinite

Given a process P and property φ, we write P |=F φ,
iff all executions of P that are fair according to F belong
to φ. The definitions of soundness and completeness are
correspondingly extended.
Due to Definition 1, the honest processes must reach max-

imal progress in any execution which is fair according to F.
But, this is not the case for the attacker, as actions by the
attacker are not constrained by F. Indeed, if the attacker

P
a
→ P ′

P |Bn,DY|Q
a
→ P ′|Bn ∪ {a},DY ∪ {a}|Q

P
a′

→ P ′ a ∈ Bn

P |Bn,DY|Q
a′

→ P ′|Bn \ {a},DY|Q

a ∈ C(DY)

P |Bn,DY|Q
i(a)
→ P |Bn ∪ {a},DY|Q

Figure 2: Operational semantics for reference

model Rn, with n ∈ N+ ∪ {∞}.

is forced to take actions (and reach maximal progress), then
she can corner herself by “talking too much”, so to speak;
see Example 1. This notion is made precise in Theorem 1.

Remark 3. As name clashes between actions of honest
processes never occur, our definition of fair scheduling cor-
responds to the strong notion of fairness in [12].

3. ASYNCHRONOUS COMMUNICATION
VIA BUFFERS

A buffer is an asynchronous channel through which pro-
cesses can communicate. We model a buffer Bn as a function
that maps elements of atom to N, where n ∈ N+ ∪ {∞} de-
notes the capacity of Bn. For an action symbol a ∈ atom,
Bn(a) shows how many instances of a are stored in the
buffer. The capacity of the buffer places an upper-bound
on how many instances of a can be stored at a time, for any
a ∈ atom. That is, ∀a ∈ atom. Bn(a) ≤ n. Remark that
the “actual” size of buffer Bn is bounded by n · |atom|. The
empty buffer ∅n satisfies ∀a ∈ atom. ∅n(a) = 0, for any n.

For action symbol a ∈ atom, the notation Bn ∪{a} stands
for the function that coincides with Bn on any b 6= a, and
Bn ∪ {a}(a) = min(Bn(a) + 1, n). Similarly, Bn \ {a}(a) =
max(Bn(a) − 1, 0), and for b 6= a we have Bn \ {a}(b) =
Bn(b). Note that these operations agree with the notion of
capacity, described above. Buffer Bn is bounded if n ∈ N+; it
is unbounded if n = ∞. As a convention, we write B for B∞.
An unbounded buffer B is a multiset of elements of atom.

We model the Dolev-Yao attacker as an entity separated
from the communication buffer, who can use its observations
to derive new messages and put them in the buffer.

Definition 2 (Reference model Rn). The asynchro-
nous composition of two honest processes P and Q, through
a buffer with capacity n, in the presence of the Dolev-Yao
attacker, denoted by P |Bn,DY| Q, is an LTS defined by
the rules of Figure 2 (symmetric rules for Q are omitted for
brevity). There, a ∈ atom and a′ ∈ atom

′, Bn represents the
communication buffer that is external to the attacker process,
and the set DY denotes attacker’s knowledge (i.e. attacker’s
observations). The action i(a) denotes injecting the symbol
a into the buffer Bn.

We remark that if P and Q are honest processes, then
P |Bn,DY|Q describes a deterministic LTS. Moreover, in the
reference model, buffers do not lose messages, unless they
are full. They do not duplicate messages; they may however
delay or reorder messages.



P
a
→ P ′

P [B]Q
a
→ P ′[B ∪ {a}]Q

P
a′

→ P ′ a ∈ C(B)

P [B]Q
a′

→ P ′[B]Q

Figure 3: Operational semantics for interpretation I

Remark 4. The model P |Bn,DY|Q can easily be extended
to express systems in which some of the communication chan-
nels are not resilient [5]: The attacker can destroy mes-
sages communicated over such channels. This is obtained
by adding the following rule to the rules of Figure 2.

a ∈ Bn ¬res(a)

P |Bn,DY|Q
d(a)
→ P |Bn \ {a},DY|Q

Here, a stands for any action in atom, and the predicate
res(a) indicates whether a is communicated via a resilient
channel or not: res(a) = T or res(a) = F.

4. THE DOLEV-YAO ATTACKER AS AN
AUGMENTED BUFFER

The Dolev-Yao attacker can be seen as a buffer which can
create messages.

Definition 3 (Interpretation I). The asynchronous
composition of two honest processes P and Q, through the
Dolev-Yao attacker, denoted by P [B]Q, is an LTS defined
by the rules of Figure 3 (symmetric rules for Q are omitted
for brevity). Here, a and a′ stand for any action in atom

and atom
′ respectively. The set B is meant to represent the

knowledge collected by the attacker.

To keep the presentation consistent with Definition 2, one
can safely assume that B in Definition 3 is a multiset.
A feature of interpretation I of the Dolev-Yao attacker,

which is often exploited in automated verification tools, is
that honest participants’ receive actions are combined with
message composition checks on the attacker’s knowledge,
and honest participants’ send actions are modelled by adding
the transmitted messages to the attacker’s knowledge. The
attacker does not explicitly perform any “action” in this
model; all the attacker does is captured via checking or mod-
ifying its knowledge set.

5. FAIRNESS CONSTRAINTS FOR INTER-
PRETATION I

The attacker model given in Definition 3 can exhibit unde-
sired behaviors when used along with fair scheduling. This
is demonstrated in the following example.

Example 1. Let P1 = a1 · 0 and P2 = a′1 · a′1 · a2 · 0,
where a1, a2 ∈ atom and a1, a2 6∈ C(∅). We consider the
liveness property φ which contains only those elements of
Aω

τ in which a2 eventually appears. Consider P1[∅]P2, and
observe that the only execution of this process is a1 · a′1 ·
a′1 · a2 · τω, due to the proximity of C. This execution is
indeed a fair execution, since after performing a2 no action
is enabled. The infinite repetition of τ is also merely an
artifact of our way of representing terminating executions.
We conclude P1[∅]P2 |=F φ. But this result is absurd, as a2

does not occur when no attacker is present. In particular,
the execution a1 ·a

′
1 ·i(λ)

ω belongs to P1|∅n, ∅|P2 (remark that
to all intents and purposes, i(λ)ω can safely be substituted
here with τω), and it is indeed a fair execution according to
Definition 1 as it cannot be extended by any (non-attacker)
participants. The liveness property φ does thus not hold in
P1|∅n, ∅|P2, under F.

Example 1 shows that the attacker model of Definition 3
can corner herself when checking liveness under F, and there-
fore attacks can be missed. An attack for a security require-
ment φ is an execution which witnesses φ does not hold in
the model. The following theorem is immediate.

Theorem 1. Checking liveness using the attacker model
P [B]Q is not sound w.r.t. the model P |Bn,DY|Q, under fair-
ness constraint F:

P [B]Q |=F φ 6=⇒ P |Bn,DY|Q |=F φ

Example 1 puts the result of Theorem 1 in the context of
cryptographic protocols.

Example 2 (Realization of Example 1). Note that
in Example 1, with P2 = a′1 · a′3 · a2 · 0, the same unsound-
ness result is obtained, if a3 ∈ C(a1). Now, assume a1
corresponds to P1 putting a secret number n ∈ N in the
buffer. Let us assume hash is a cryptographic secure hash
function and a′3 denotes the fact that P2 expects to receive
hash(n). Clearly, if there is no attacker in the system, P1

and P2 cannot communicate, and thus a2 never happens.
However, when the attacker is present, knowing n, the at-
tacker can construct hash(n). Therefore, if the fair schedul-
ing constraint is added to the model, then the attacker will
serve as an interface which facilitates the conversation be-
tween P1 and P2. This feature of the attacker process is
desired when checking safety properties. When it comes to
liveness, nonetheless, it may result in that some attacks are
overlooked.

The interpretation P1[B]P2 is the one that is most com-
monly used for specifying the DY attacker in formal verifi-
cation tools (see the related work). Below, we investigate
whether interpretation P1[B]P2 can be sound and complete
w.r.t. P1|Bn,DY|P2 by enforcing perhaps a carefully crafted
fairness constraint. To answer this question, we distinguish
two cases: (1) n = ∞, and (2) n ∈ N+.

5.1 Unbounded buffers
Here, we are interested in characterizing any fairness con-

straint F† such that

P [B]Q |=F† φ ⇐⇒ P |B,DY|Q |=F φ (1)

where P and Q are honest processes, and φ is any liveness
property. Below, we show that any fairness constraint F†

which satisfies Formula 1 is non-regular. This indicates that
specifying F† falls beyond the expressive power of proposi-
tional µ-calculus, and in particular that of temporal logics
such as ltl and ctl∗ which are typically used for specify-
ing fairness constraints in standard automated verification
algorithms and tools, cf. [23]. Employing such fairness con-
straints would thus defy efficient automatic verification of
liveness security requirements in interpretation I.

We continue with some definitions. Given an execution
σ in P we write σ̂ for the sequence of pairs (σi, en(S(σ)i)),



for i ∈ N. Clearly σ̂ ∈ (A × 2A)ω. We consider a fairness
constraint as being a property on (A×2A)ω. A subset of Σω,
for finite Σ, is an ω-regular language iff it is a finite union of
sets U · V ω, where U, V ⊆ Σ∗ are regular subsets of Σ∗ [23].
We say a fairness constraint is regular iff it constitutes an
ω-regular language. It is straightforward to prove that fair
scheduling (Definition 1) is regular on (A× 2A)ω, by giving
Streett automata (see [23]) that accepts F. Our proof of F†

not being regular depends solely on non-regularity of finite
prefixes of elements of F†.

Theorem 2. F† is not regular over (A× 2A)ω.

Proof. Consider two processes P = an1 · a2 · 0 and Q =
a′2 · a

′m
1 · a3 · 0, with n,m ∈ N+, such that a1, a2 6∈ C(∅) and

a3 6∈ C({a1, a2}) (α0 = ǫ and αi+1 = α · αi, for i ∈ N). Let
φ ⊆ Aω

τ be the liveness property that contains all executions
in which a3 occurs. Note that with m ≤ n, P |∅, ∅|Q |=F φ,
while m > n results in P |∅, ∅|Q 6|=F φ. Observe that the
executions of P [∅]Q are of the form σ = an1 ·a2 ·a

′
2 ·a

′m
1 ·a3 ·τ

ω.
This results in σ̂ = (a1, {a1})

n−1 · (a1, {a2}) · (a2, {a
′
2}) ·

(a′2, {a
′
1}) · (a

′
1, {a

′
1})

m−1 · (a′1, {a3}) · (a3, ∅) · (τ, ∅)
ω, which

has to belong to F† iff m ≤ n. The expression above can
be rewritten as σ̂ = xn−1 · y · zm−1 · w · τω, for appropriate
x, y, z, w, and with overloading τ . Therefore, the set F†

must include U · τω, with U = {xn · y · zm ·w | m ≤ n}. The
set U is not a regular subset of (A× 2A)∗.
Now, assume, toward a contradiction, that F† is an ω-

regular language. Then, there must exist a set U ′ such that
U ′ · τω ⊆ F†, and U = U ∪ U ′ is a regular subset of (A ×
2A)∗. We claim this would change the behavior of F† for
the above processes as well. Below, we “pump down” the
set U to show that indeed if U is regular, then F† does
not satisfy Formula 1. Take xp · y · zp · w ∈ U, where p is
the pumping length of the regular set U. According to the
pumping lemma, ∃q. xq · y · zp · w ∈ U, with q < p. This
contradicts the allowed behavior of F†, mentioned above, for
witness processes P and Q. Therefore, U is not a regular
set in general, and therefore F† is not regular.

The proof of Theorem 2 intuitively states that fairness
constraint F† inevitably involves counting. Such constraints
can be realized, e.g., using pushdown automata, or using
a counting operator. For instance, given a counting oper-
ator #, we can specify that elements of atom which are
enabled infinitely often, and elements of atom

′ which are
positively enabled infinitely often, are taken infinitely often
in a fair execution. Here a′ ∈ atom

′ is positively enabled in
execution σ at S(σ)i iff a

′ ∈ en(S(σ)i) and #(a)−#(a′) > 0,
where #(α) is the number of occurrences of α in the prefix
of σ up to σi, i.e. the sequence σ1 · · ·σi.

Remark 5. The Dolev-Yao attacker model can be (inter-
preted, and) formalized in various ways. We focus on in-
terpretation I in which messages are channeled through the
attacker process, because it has been used in many tools and
algorithms for automated formal verification of security pro-
tocols. One can however think of other interpretations, e.g.
the one given below, that can be proved to be sound and com-
plete (with constraint F), under certain conditions, w.r.t. the
reference models.

P1
a
→ P ′

1

P1〈〈B〉〉P2
a
→ P ′

1〈〈B ∪ {a}〉〉P2

P1
a′

→ P ′
1 a ∈ B

P1〈〈B〉〉P2
a′

→ P ′
1〈〈B \ {a}〉〉P2

a ∈ C(B)

P1〈〈B〉〉P2
i(a)
→ P1〈〈B ∪ {a}〉〉P2

Here, P1 and P2 are regular processes, and the multiset B

represents the attacker knowledge as well as the content of
the communication buffer.

Remark that the interpretation P1〈〈B〉〉P2 does not require
complex fairness constraints for soundness and complete-
ness (as mentioned above, the fair scheduling F is suffi-
cient for this purpose), and moreover it is more concise
than P1|Bn,DY|P2, namely the communication buffer and
and attacker knowledge set coincide in P1〈〈B〉〉P2. However,
in interpretation P1〈〈B〉〉P2, receive actions of the partici-
pants are not coupled with computing the closure of the at-
tacker knowledge (cf. Section 1), and moreover the knowl-
edge of the attacker, captured by the multiset B in this case,
is not monotonic. Monotonicity of attacker’s knowledge is a
key factor in decidability results for secrecy in cryptographic
protocols, e.g. see [21] and [20]. These features, therefore,
severely limit the applicability of interpretation P1〈〈B〉〉P2 for
automated formal analysis.

Remark 6. For verifying safety properties which are in-
sensitive to attacker actions, all the interpretations intro-
duced in the paper are sound and complete w.r.t. the refer-
ence models. The notion of insensitivity is made precise in
Section 6.

5.2 Bounded buffers
In this section we investigate whether the interpretation

P1[B]P2 can be made sound and complete w.r.t. P1|Bn,DY|P2,
with n ∈ N+, by enforcing a suitable fairness constraint. To
simplify the presentation, we consider only the case where
n = 1, i.e. Bn is implemented as a set. We are interested in
any fairness constraint Fr such that

P1[B]P2 |=Fr
φ ⇐⇒ P1|B1,DY|P2 |=F φ (2)

where P1 and P2 are honest processes, and φ is any liveness
property. The non-regularity argument of the previous sec-
tion does not hold with bounded buffers. Nevertheless, Fr

turns out to be a complicated condition. In particular, Fr

would not be “insensitive to addition and deletion of pre-
fixes”, a feature often attributed to fairness constraints [22].
Below, we use the notion of local testability [18] to capture
this intuition. Informally, a property is locally testable if one
can determine whether an execution belongs to the prop-
erty or not, by observing the execution only via a window
of bounded width. We proceed with some definitions.

Given a finite sequence σ ∈ Σ∗, with Σ being a finite
set of symbols and k ∈ N+, define Lk(σ), Rk(σ) and ik(σ)
as, respectively, the left-end segment of σ of length k, the
right-end segment of σ of length k, and the set of interior
segments of σ of length k. When the length of σ is less
than or equal to k, then Lk(σ) = Rk(σ) = σ and ik(σ) =
∅. We write σ ≡k σ′, for σ, σ′ ∈ Σ∗, iff Lk(σ) = Lk(σ

′),
Rk(σ) = Rk(σ

′) and ik(σ) = ik(σ
′). For infinite sequences

σ, σ′ ∈ Σω, we write σ ≡k σ
′ iff ∃σ0, σ

′
0 ∈ Σ∗, θ ∈ Σω such

that σ = σ0 · θ and σ′ = σ′
0 · θ, and σ0 ≡k σ

′
0. A property

ψ ⊆ Σω, is k-testable, for k ∈ N+, iff ψ saturates ≡k, and



a property ψ is locally testable iff it is k-testable for some
k ∈ N+. Below, we show that fairness constraint Fr, seen
as a property on (A× 2A)ω, is not locally testable.

Theorem 3. Fr is not locally testable.

Proof. Assume, towards a contradiction, that Fr is lo-
cally testable. Therefore, Fr is k-testable, for some k > 0.
Let P1 = ak1 · a2 · ak1 · a′2 · ak1 · a′2 · ak1 · a3 · 0, and P2 = 0

with a1, a2, a3 ∈ atom, a1, a2 6∈ C(∅) and a3 6∈ C({a1, a2}).
Consider the liveness property φ containing only executions
in which a3 appears. Note that P1|∅1, ∅|P2 6|=F φ. Since
P1[∅1]P2 is sound under Fr (see Formula 2), the terminating
execution of P1[∅1]P2, i.e. a

k
1 ·a2·a

k
1 ·a

′
2·a

k
1 ·a

′
2·a

k
1 ·a3·τ

ω, is con-
sidered unfair according to Fr. Now, consider Q1 = ak1 · a2 ·
ak1 ·a

′
2 ·a

k
1 ·a3 ·0, and Q2 = 0. Observe that Q1|∅1, ∅|Q2 |=F φ.

Due to Formula 2, the terminating execution of Q1[∅1]Q2,
i.e. ak1 ·a2 ·a

k
1 ·a

′
2 ·a

k
1 ·a3 ·τ

ω, is considered fair according to Fr.
Note that ak1 ·a2 ·a

k
1 ·a

′
2 ·a

k
1 ·a3 ≡k a

k
1 ·a2 ·a

k
1 ·a

′
2 ·a

k
1 ·a

′
2 ·a

k
1 ·a3.

This is because instances of a2 and a′2 are placed at least k
points apart. These sequences are indistinguishable for any
k-testable property; hence a contradiction.

Non-locality of Fr indicates that Fr cannot be reduced to
a simple local (per state) conflict resolution. This inversely
affects the efficiency of automated verification algorithms
using Fr. We remark that the fair scheduling constraint F

is locally testable, intuitively because no finite prefix of σ
affects whether σ is fair according to F or not.

6. SOUND ABSTRACTIONS FOR BOUNDED
BUFFERS

In the presence of the DY attacker, if a liveness property
holds with a certain buffer capacity, it also holds in any sys-
tem with a larger buffer capacity. This is intuitively because
the DY attacker can duplicate messages and hence emulate
large buffers using small buffers. Proving this observation
formally however requires limiting the liveness properties
under consideration, as shown in Theorem 4. The theorem
allows deriving general security guarantees from verification
of a bounded model.
We proceed with some definitions. For two LTSs L1 =

(P1, P
0
1 , →1) and L2 = (P2, P

0
2 ,→2), a binary relation

Υχ ⊆ P1 × P2 is a branching simulation preorder, w.r.t.

χ ⊆ A, if whenever P1ΥχP2 and action α ∈ A, P1
α
→1 P

′
1

implies that there exist P̂2, P
′
2 ∈ P2 and ξ ∈ χ∗ such that

P2
ξ

→2 P̂2 and P̂2
α
→2 P

′
2 with P1ΥχP̂2 and P ′

1ΥχP
′
2. We use

the notation L1 �χ L2 iff there exists a branching simulation
preorder Υχ such that P 0

1ΥχP
0
2 . Intuitively, if L1 �χ L2

then L2 simulates L1; the simulation is modulo χ. The ele-
ments of χ are “hidden” in �χ, and when using this relation,
χ consists of attacker actions which are not directly visible
to honest processes.
For a finite sequences of actions σ, we write fB(σ) for the

sequence that is found by removing all elements of B ⊆ A

from σ. That is, fB is a function that filters out elements
of B. For two infinite sequences of actions σ, σ′, we write
σ ∼B σ′ iff ∃θ, θ′ ∈ A∗, α ∈ Aω. fB(θ) = fB(θ

′) and σ = θ ·α
and σ′ = θ′·α. Obviously, ∼B , withB ⊆ A, is an equivalence
relation. We say a property is insensitive to the actions of
the attacker if it saturates ∼atomA

.

Theorem 4. For any m ∈ N+, n ∈ N+ ∪ {∞}, and any
liveness property φ that saturates ∼atomA

, if m ≤ n, then
P1|Bm,DY|P2 |=F φ =⇒ P1|Bn,DY|P2 |=F φ.

Proof. Let Lm = P1|Bm,DY|P2 and Ln = P1|Bn,DY|P2.
Suppose that Ln 6|=F φ. To prove the theorem, we need to
show Lm 6|=F φ. Let σ be an execution in Ln that violates
φ, under the fairness constraint F. Suppose that Ln �χ Lm,
with χ = atomA, (we will show this later). Then the trans-
lation of σ in Ln to some simulation σ′ in Lm is immediate.
Now, if σ violates φ and φ saturates ∼atomA

, then σ′ violates
φ as well. To show that σ′ is fair in Lm according to F we
note that in the branching simulation preorder the set of
actions enabled at σ′ is the same as that of σ. Therefore,
as σ is a fair schedule in Ln, we conclude that σ′ is a fair
schedule in Lm.

Now we show that Ln �χ Lm, with χ = atomA holds.
Note that the converse relation Lm � Ln is obvious. De-
fine the relation Υχ as (P1|X,Y |P2)Υχ(P1|Z,W |P2) iff ∀a ∈
atom. Z(a) ≤ X(a)∧ Y =W , where X and Z are functions
from atom to {0, · · · , n} and to {0, · · · ,m}, respectively, and
Y,W ⊆ atom. Observe that when the buffers are the same
and the attacker’s initial knowledge is equivalent in Lm and
Ln, this relation holds.

To see that Υχ is indeed a branching simulation pre-

order, take some a ∈ atom and suppose P1|X,Y |P2
a
→

P ′
1|X

′, Y ′|P2. Clearly, X ′(a) = min(X(a) + 1, n) and Y ′ =

Y ∪ {a}. Corresponding to this we have P1|Z,W |P2
a
→

P ′
1|Z

′,W ′|P2, where Z
′(a) = min(Z(a) + 1,m) and W ′ =

W ∪ {a}. Since Z(a) ≤ X(a) and m ≤ n, it follows that
(P ′

1|X
′, Y ′|P2)Υ(P ′

1|Z
′,W ′|P2).

Now suppose P1|X,Y |P2
a′

→ P ′
1|X

′, Y ′|P2, for some a′ ∈
atom

′. Clearly, X ′(a) = max(X(a) − 1, 0), and Y ′ = Y .
If P1|Z,W |P2 can perform a′, then an argument like above
works. There are however cases where Lm cannot perform
a′ because there is no a left in Bm (while there are still as in
Bn). In this situation we introduce an attacker action i(a)
to σ′. Namely, we define ξ = i(a) in case X(a) > 0 and
Z(a) = 0. This attacker action is possible due to the prox-

imity property of C. Then, P1|Z,W |P2
ξ
→ P1|Z

′,W |P2.
Due to the precondition X(a) > 0 ∧ Z(a) = 0, we get
Z′(a) = min(Z(a) + 1,m) ≤ X(a). From this state, a′ can
be performed. The cases for the attacker’s internal actions
in these two systems are identical, as the bounded commu-
nication buffer does not affect the DY set. We conclude that
Ln �χ Lm.

We remark that Theorem 4 hinges upon the attacker’s
ability to duplicate messages. This has two implications.
First, Theorem 4 holds in all models that allow faulty com-
munication links which duplicate messages. For instance,
various message relay defects, Byzantine process failures,
and the DY model are sources of such link failures. Second,
the theorem in fact falls apart when messages cannot be ar-
bitrarily duplicated, e.g. when the DY attacker is not present
in the model. For instance, take P1 = a1 · a1 · a

′
1 · a

′
1 · a2 · 0,

and P2 = 0, with a1, a2, a3 ∈ atom. Let φ be the liveness
property containing all executions in which if a2 occurs, a3
occurs as well. Note that composition of P1 and P2 via asyn-
chronous buffer B1 satisfies φ, while in their composition via
buffer B2 property φ does not hold.



7. CONCLUDING REMARKS
We study an interpretation of the Dolev-Yao attacker

model P [B]Q in which messages are channeled through the
attacker process, and compare it to a reference model
P |B,DY|Q in which the communication media, albeit be-
ing controlled by the attacker, are external to the attacker
process. The central question of the paper is to find suitable
fairness constraints for checking liveness properties in the
model P [B]Q. Here, a fairness constraint F is called suitable
if any liveness property that holds in the model P [B]Q under
constraint F also holds in the model P |B,DY|Q under the
standard maximal progress fairness constraint, and vice versa.
We formalize fairness constraints as formal languages, and

show that no ω-regular language is a suitable fairness con-
straint if the communication buffers are unbounded in the
model P |B,DY|Q. Similarly, we show that no locally testable
language is a suitable fairness constraint if the communica-
tion buffers in the model P |B,DY|Q are bounded. These
results indicate that P [B]Q is not favorable when it comes
to efficient automatic verification of liveness security require-
ments, because of high complexity of the fairness constraints.
On the positive side, the very same feature of the Dolev-

Yao attacker model which results in high complexity of fair-
ness constraints plays a favorable role in verification of pro-
tocols with bounded buffers. Namely, we show that, in the
presence of the attacker, any liveness property that holds in a
protocol with buffer capacity n, also holds when buffers have
capacity m ≥ n. The result allows deriving general security
guarantees from verification of small bounded models. We
remark that this result (1) hinges upon attacker’s “contri-
butions” to the protocol, i.e. it fails to hold in asynchronous
systems in general, absent of attacker, and (2) holds only for
liveness properties that are“insensitive” to the actions of the
attacker. We precisely define the class of such properties.
We expect that with simple attacker models (e.g. P [B]Q)

one can still find simple suitable fairness constraints (e.g.
standard maximal progress constraint), for verifying liveness
security requirements, by adding reasonable assumptions on
the behaviors of honest participants. Finding such assump-
tions for the attacker models that are commonly used calls
for further research.
The results obtained in this paper are not bound to the

Dolev-Yao attacker model. We expect them to also hold,
with minor adjustments, in other models which allow faulty
communication links to duplicate messages. For instance,
various message relay defects, and Byzantine failures are
sources of such link failures. Extending our results to more
general settings is left for future work.
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