
Validating Integrity for the Ephemerizer’s Protocol with
CL-Atse

Charu Arora1 and Mathieu Turuani2

1 Indian Institute of Technology, Delhi, India
charu.arora7@gmail.com

2 Loria-INRIA, Vandoeuvre-lès-Nancy, France
turuani@loria.fr

Abstract. It is usually very difficult in Computer Science to make an informa-
tion "disappear" after a certain time, once it has been published or mirrored by
servers world wide. This, however, is the goal of the IBM ephemerizer’s protocol
by Radia Perlman. We present in this paper the general structure of the CL-Atse
protocol analysis tool from the AVISPA’s tool-suite, and symbolic analysis of the
ephemerizer’s protocol and its extensions using CL-Atse. This protocol allows
transmitting a data which retrieval is guarantied to be impossible after a certain
time. We show that this protocol is secure for this property plus the secrecy of
the data, but is trivially non secure for its integrity. We model a standard integrity
check as a first extension to this protocol, which is natural and close to common
usage, and we present a second extension for integrity that is much less obvious
and deeply integrated in the structure of the ephemerizer’s protocol. Then, we
show that while the first extension guaranty the basic integrity property under
certain conditions, the second one is much stronger and allows faster computa-
tions.

1 Introduction

It is a known difficult problem to ensure that a data is completely destroyed, say after
a given amount on time: whatever it is transmitted by email, placed on a web server,
etc.., a data is expected to be copied or archived in a way that we cannot truly con-
trol. To solve this problem, and to guaranty expiration times on certain messages, Radia
Perlman proposed the so called ephemerizer’s protocol [20], a solution where a unique,
not completely trusted server manage the keys used to encrypt those messages. Since
these keys are only known by the ephemerizer, deleting one when its expiration time
is reached makes the data “disappear”. It is the responsibility of the ephemerizer to
provide keys for the protocol and delete them at the appropriate time. Moreover, Perl-
man’s protocol has the extra advantage to use a so called triple encryption, that guaranty
the secrecy of the data even when the ephemerizer is dishonest. However, it is kind of
obvious that this protocol does not guaranty the integrity of the data.

In this paper, we propose an automatic analysis of this protocol w.r.t its security
properties, as well as some extensions validating integrity. Many decision procedures
have been proposed to decide security properties of protocols w.r.t. a bounded number

of sessions [1,9,21,19] in the so called Dolev-Yao model of intruder [17], the dominat-
ing formal security model in this line of research (see [18] for an overview of the early
history of protocol analysis). In particular, among the different approaches the symbolic
ones [19,12,14] have proved to be very effective on standard benchmarks [13] and dis-
covered new flaws on several protocols. Here, we uses the CL-Atse tool [22] to analyze
the Ephemerizer’s protocol and its extensions. The modularity and performance of this
tool appeared to be very useful for analyzing protocols from the AVISPA [2] project
in which CL-Atse is involved since a few years (with OFMC [6], SATMC [3] and
TA4SP [7]), as well as for the RNTL Prouvé project. The CL-Atse tool can be freely
used, either by binary download on the CL-Atse web page3, or through on-line exe-
cution on the AVISPA web page4. It allows automatic formal analysis of cryptographic
protocols with the single (necessary) restriction of a bounded number of sessions. These
analysis are done on a symbolic level, i.e. bit-strings are replaced by terms in a language
of messages, and we assume that all cryptographic primitives are perfect. As usual in
such cases, the protocol is run in presence of an active intruder with all capacities of the
Dolev-Yao intruder (i.e. he can intercept or block any message, impersonate agents, or
use any legal cryptographic operation).

Paper overview First, we present the details of the version of the ephemerizer’s protocol
that is analyzed here (section 2), along with the security properties. This includes two
versions of the integrity. Second, we give a general overview of the CL-Atse tool used
to analyze this protocol (section 3). Then, in section 4 we show that while the protocol
validates the standard security properties, a simple extension for data integrity fails and
should never be used in practice. Instead, two extensions are proposed, one quite natural
and the other one less obvious. We show that while the natural extension satisfy the
basic data integrity property, the second one is much stronger and may even be faster in
practice. We conclude in section 5. Also, note that the protocol models presented here
are publicly available at [4].

2 The ephemerizer’s protocol

The term signature allowed by the analysis tool and used to model the Ephemerizer’s
protocol is the following :

T erm=A tom |V ar |T erm.T erm | inv(T erm)
|{T erm}s

T erm | {T erm}a
T erm

|SigT erm(T erm) |HMAC(A tom,T erm)
|T erm⊕T erm |Exp(T erm, Product)

Product=(T erm)±1 | (T erm)±1×Product

Terms can be atoms, variables, concatenations (or pairing), and symmetric or asym-
metric encryption (marked by s or a). Also, inv(k) is the inverse of k for asymmet-
ric encryption. Note that if k is a (random) term, then inv(k) exists but is unknown

3 http://www.loria.fr/equipes/cassis/softwares/AtSe/
4 http://www.avispa-project.org/web-interface/

EphemerizerBobAlice

{T}a
KBob ,

{M}s
S , KeyID , Keph

HMAC(T,{{S}a
KBob}a

Keph.Keph)

Use S to extract M

verifies the HMAC

Keph broadcasted already

{{{S}a
KBob}a

Keph}s
J

{{{S}a
KBob}a

Keph}s
T ,

KeyID , {J}a
Keph

{{S}a
KBob}s

J

Fig. 1. Ephemerizer Scheme proposed by Radia Perlman (using triple encryption). T , S, and J are
symmetric keys generated during the protocol.

to every agent. Sigk(m) represents the message m plus a signature on m with key k.
HMAC(k,m) represents m plus a MAC on message m with key k. In the tool this is
coded as {h,m}a

k with some (optional) header h to differentiate multiple operators: on a
formal point of view, the only difference between signature and asymmetric encryption
is the agents who knows the key k or it’s inverse inv(k). The ⊕ and Exp(..) operators
model the xor and exponentiation operators. A Product represents a product of bit-
strings (modeled by terms) to be used as an exponent for the Exp(..) operator. Thus,
each term in the product is equipped with +1 or −1, in order to model usual proper-
ties such that a+1× a−1× b+1 = b+1. The intruder capabilities in CL-Atse match the
Dolev-Yao model [17], extended for xor and exponentiation as in [10,11].

However, the Ephemerizer’s protocol relies on neither ⊕ nor exponentiation, and
uses only atomic keys in its design. Therefore, we simplify a bit the term signature by
allowing the following shortcuts to present the protocol and its analysis. Note however
that this does not restrict the tool analysis in any way.

Notations: Following the notations of Radia Perlman with small differences, we
note u.v the concatenation of messages u and v; {M}K the encryption of M by K (sym-
metric or asymmetric depending on K’s type); {M}inv(KAlice) the signature of M with
Alice’s private key. We also assume the existence of a subset AKeys⊆ Atom containing
the public keys for asymmetric encryption or signature. Note that for the analysis tool
as well as for the modeling in the tool’s language, a signature is equivalent to an en-
cryption with a private key, and a MAC is equivalent to an encryption with a public key
which private key is unknown to everybody, including the intruder.

Description: The ephemerizer’s protocol is a communication protocol that allows
an agent, say Alice, to send one message (or more) protected by an expiration time.
While the recipient (Bob) shall be able to retrieve the message(s) before the expiration
time, this must become impossible after the time is reached. To do so, a trusted third
party is required to provide an ephemeral key Keph, i.e. a public encryption key linked
with an expiration time, that is used to encrypt the data sent to Bob. Then, Bob must
ask the ephemerizer for a decryption key that he will get only if the expiration time

is not reached yet. This ensures the expected ephemeral property. Moreover, by using
multiple encryption with single-use symmetric keys, the protocol also ensures that the
message remains secret for anybody except Alice and Bob, even if the ephemerizer is
dishonest. The protocol is displayed in figure 1, with KBob being Bob’s public key, and
with T , S, J, M being nonces, i.e. atoms freshly generated at run time, and represents
respectively three symmetric keys and the message from Alice. Here, S is the symmetric
key protecting M that Bob must acquire from the ephemerizer. S is sent to Bob, too, but
protected by Bob’s public key so that only he can get it, and protected by the ephemeral
key Keph to ensure that Bob don’t get it if the expiration time is reached. It is then
protected (again!) by Bob’s public key (through T for efficiency) to ensure that only
Bob can query the ephemerizer. This is the so called triple encryption. Bob’s query
to the ephemerizer simply consists in Bob asking him to remove the protection of the
ephemeral key Keph.

The initial state of the protocol matches the expects: all public keys of agents are
known by everybody including the intruder, as well as Keph and KeyID (ID of Keph),
and the HMAC function; private keys are known by their owner only; and other atoms
(T , S, M and J) are generated during the execution.

Security properties: This protocol was designed to guarantee both the ephemeral
property on M (i.e. bob cannot obtain M after the expiration time), and the confidential-
ity of M (only Alice and Bob can obtain M). According to the formal analysis of this
protocol that we performed with CL-Atse (see Section 4), these properties are always
satisfied for at most two sessions, and for all the 3-sessions scenarios that we could run.
However, it appears immediately that this protocol does not guaranty the integrity of M:
the intruder can impersonate Alice to send his own message to Bob. However, integrity
of M is a basic property that many users may need. Therefore, in this paper we add the
two following properties to the previous basic ones:

1. Integrity of the message: it is impossible for an intruder to corrupt, change or re-
place M during the transfer;

2. Integrity of the protocol run: it is impossible for an intruder to corrupt, change or
replace any of the temporary keys of the protocol, i.e.. T , S, J or Keph.

In order to guaranty the property 1 above, a user would certainly simply sign M with
Alice’s private key, assuming that Bob knows her public key already. Along with the
proof of destination guarantied by the confidentiality property of the Ephemerizer’s pro-
tocol, this proof of origin ”seems” to guaranty integrity. This approach is very classical
in the real world, where users or agents usually compose protocols (or cryptographic
methods) with limited security properties to reach stronger ones. We will see in the
analysis in Section 4 how limited this approach can be. But for now, we simply remark
that we cannot rely on the Ephemerizer’s nonces to guaranty the security of this com-
bined protocol w.r.t. multiple sessions: if an agent plays Alice twice, then the intruder
can exchange the messages of the two sessions. Therefore, one need to include either
the official recipient’s name or a sessions ID of Alice in the message transmitted, i.e.
the protocol that we consider initially is the following:

Modified Ephemerizer (root version): In the original Ephemerizer protocol, we re-
place M by {M}inv(KAlice) .IDCheck, i.e Alice’s signature on M joint with some IDCheck

atom to identify each session. Depending on which variant of the integrity property we
consider, IDCheck will be either Bob (Bob’s name, for weak integrity) or a SiD (a ses-
sion ID, for strong integrity). These two variants are defined as follows.

To define the integrity properties that we consider, we need the differentiate roles
and agents. Now, Alice and Bob used before are in fact only roles, i.e. pieces of protocols
or services run by real agents a or b, e.g. real computers or humans. Agents can run
many roles, or sessions, in parallel. In our opinion, there are two possible variants for the
integrity property that the final user may additionally require for this protocol, namely
the weak and strong integrity :

Integrity Variant n°1 (weak integrity): A data like M or T is corrupted between a and
b playing Alice and Bob when b receives a value for M that has never been sent by a
in any of the (multiple) sessions she plays with b. That is, we allow messages of one
session to reach an other session as long as the agents are the same. To ensure this, we
uses Bob as IDCheck’s value.

Integrity Variant n°2 (strong integrity): Same as above, but a message is also cor-
rupted if it is accepted in an other session (no crossing). To ensure this, adding the
recipient’s name is not enough. Therefore, we uses SID as IDCheck’s value, with SID
a public, unique, number (like a port number) identifying Alice’s session playing with
Bob. We assume that Bob (and the intruder!) knows SID from the start of the protocol.

Both variants will be checked for validity against the protocol (and its two patches)
in Section 4. Note that the encryption with S, as well as the triple encryption over
S, should prevent any modification of SID or Bob’s name. While these modifications
may look obvious at first, and may even be performed in practice since it is only a
modification of M, we will see that it is still possible for the intruder to combine multiple
sessions in order to corrupt the message M.

3 Overview of CL-Atse

The protocol analysis methods of CL-Atse have their roots in the generic knowledge
deduction rules from CASRUL [12] and AVISPA. However, a lot of optimizations and
major extensions have been integrated in the tool, like prepossessing of the protocol
specifications of extensions to manage the algebraic properties of operators like xor or
exponentiation. In practice, the main characteristics of CL-Atse are:

– A general protocol language: CL-Atse can analyze any protocol specified as a set
of IF rewriting rules (no restriction, see [2] or the documentation on AVISPA’s web
page for IF details). The figure 2 shows the standard process of protocol analysis
using the AVISPA tools, from a specification in HLPSL (role-based, same idea as
strands) to any of the four tools available at the moment.

– Flexibility and modularity: CL-Atse structure allows easy integration of new deduc-
tion rules and operator properties. In particular, CL-Atse integrates an optimized
version of the well-known Baader & Schulz unification algorithm [5], with mod-
ules for xor, exponentiation, and associative pairing. To our knowledge, CL-Atse
is the only protocol analysis tool that includes complete unification algorithms for
xor and exponentiation, with no limitation on terms or intruder operations.

Protocol Analyser

HLPSL2IF

High−Level Protocol Specification Language (HLPSL)

Intermediate Format (IF)

Model−Checker

CL−based

CL−AtSe

SAT−based

SATMC TA4SP

Tree Automata−based

OFMC

On−the−fly

Model−Checker Attack Searcher

Translator

Fig. 2. Structure of AVISPA’s analysis tool

– Efficiency: CL-Atse takes advantage of many optimizations, like simplification and
rewriting of the input specification, or optimizations of the analysis method.

– Expressive language for security goals: CL-Atse can analyze any user-defined state-
based property specified in AVISPA IF format.

Since protocol security is undecidable for unbounded number of sessions, the analysis
is restricted to a fixed but arbitrary large number of sessions (or loops, specified by the
user). Other tools provide different features. The closest to CL-Atse are:

The OFMC tool [6], also part of AVISPA, solves the same problem as CL-Atse except
that loops and sessions are iterated indefinitely. However, OFMC proposes a differ-
ent method to manage algebraic properties of operators: instead of hard-coding these
properties in the tool, a language of operator properties is provided to the user. Equal-
ity modulo theories is solved through modular rewriting instead of direct unification
with state-of-the-art algorithms for CL-Atse. However, since this language covers all
theories, termination is only obtained by specifying bounds on message depths and
number of intruder operations used to create new terms. Hence, completeness cannot
be ensured. CL-Atse does not provide such flexibility on properties, but it also does not
have any limitation for the theories it can handle (xor, exponentiation, etc...). Moreover,
thanks to modularity in the unification algorithm and in knowledge deduction rules, it
is quite easy to include new algebraic (or cryptographic) properties directly in the tool.

The Corin-Etalle [14] constraint-based system, which improves upon one developed
by Millen & Schmatikov, relies on an expressive syntax based on strands and some
efficient semantics to analyze and validate security protocols. Here, strands are extended
to allow any agent to perform explicit checks (i.e. equality test over terms). This makes
a quite expressive syntax for modeling protocols, that is however subsumed by IF rules.
Moreover, to our knowledge no implementation for xor and exponential is provided.

The SCYTHER tool [15], recently developed by Cas Cremers, is dedicated to un-
bounded protocol analysis. However, unlike other tools for unbounded protocols which
restrictions, heuristics or approximations also apply to the case of a bounded number of
sessions, this one do not suffer from this limitation. This would be a nice alternative for
analyzing the Ephemerizer’s protocol, especially for an unbounded number of sessions,
assuming that the user-defined predicates and properties used here are not problematic
for analyzing an unbounded number of sessions (but they should not be).

These other tools could have very well been used for analysis in this paper with
equivalent results. Choosing CL-Atse had the advantage to allow cheating only one
protocol model understandable by all tools in the AVISPA’s project. Also, various algo-
rithms are implemented in CL-Atse to simplify and optimize the input protocol speci-
fication, and also to guide the protocol analysis. However, these methods require work-
ing on a protocol specification with some special features. Listing these would be quite
technical, but the most important ones are that all protocol steps and roles must be local
to only one participant, and that CL-Atse must eliminate all honest agent’s knowledge
by converting them into a small set of equality and inequality constraints over terms
with global variables. This allows CL-Atse to compute closures of the participant’s or
intruder knowledge, unforgeable terms, sets or facts, and to optimize each role instance
accordingly (prepossessing). This prepossessing has two main axes :
Protocol simplifications: They reduce the overall size of the protocol, and specifically
the number of steps, by merging some protocol steps together, or tagging others with
execution directives (e.g. tag a protocol step to be run as soon or as late as possible).
This is a generic process in CL-Atse’s algorithm, thus not limited to the Ephemerizer’s
protocol in this paper. Also, these tags are not heuristics, in the sense that opposite
choices are never tried. Thus, CL-Atse tag a protocol step only when it was able to prove
statically that if an attack exists, then there exists one validating the tag. In practice, this
occurs quite often.
Optimizations: Protocol optimizations aim at rewriting automatically some parts of the
protocol in order to accelerate the search for attacks. The acceleration can be signifi-
cant, and the protocol structure can be changed deeply but equivalently. The idea is to
track all possible origins of cipher-texts that the intruder must send but cannot create
himself (i.e. necessarily obtained from an agent). By building an exhaustive list of ori-
gins for such terms, CL-Atse can reduce the future work of the analysis algorithm by
unifying these terms with each of their possible origins and generate minimal choice
points accordingly. Analysis acceleration comes from a reduction of redundancy in the
steps execution. Moreover, this strategy also fixes the time when steps holding such
cipher terms must be run in an attack, thus reducing interleaving.

Once all prepossessing are done, the analysis algorithm implemented in CL-Atse
symbolically executes the protocol in any possible step ordering. While the maximum
number of symbolic executions build by the tool remains finite (exp. bounded in the
size of the protocol specification), each one represents an infinite number of protocol
traces and intruder actions. Note that no bound is assumed on the intruder (neither
the number of actions nor the size of terms it outputs). Also, this analysis relies on
a (generic) unification algorithm modulo the properties of the operators, like xor or
exponentiation, that provide all term-specific computations.

4 Symbolic analysis with CL-Atse

We modeled the Ephemerizer’s protocol and all its variants in the HLPSL language,
input of the AVISPA’s protocol analysis platform in which CL-Atse is a back-end. Even
if not particularly complex and quite readable, the technical design of the modeling in
this language would be too long to describe in this paper. However, all modeling in
HLPSL used in this paper are publicly available and can be found at [4]. We refer to the
AVISPA’s user manual (google avispa-project) for deeper concerns about HLPSL.

Formal Modeling of the integrity properties: The integrity is modeled as usual in
HLPSL using the witness and request or wrequest predicates defined initially for au-
thentication, and the property shortcuts provided in HLPSL. E.g. for weak integrity:

– the witness(Alice,Bob,m,M1) predicated is released when Alice send M1 to
Bob;

– the wrequest(Bob,Alice,m,M2) predicate is released when Bob receives M2;
– and the protocol must guaranty that for each wrequest there exists a matching

witness.

Formal Modeling of the ephemeral property: The Ephemeral property however can-
not rely on any predicate or property already defined in HLPSL or in the tool. Therefore,
user-defined predicates and security properties must be written in the modeling specif-
ically for this protocol. Hopefully, the analysis tool is able to check a wide range of
user-defined properties, written in an property language in HLPSL based on LTL for-
mula. Thus, we defined the following predicates :

– message_decr_bob(A, B, E, KeyID, KEph) is activated by Bob when he be-
come able to decrypt {M}S associated to key KE ph. This is equivalent to Bob
knowing M.

– message_not_decr_bob(A, B, E, KeyID, KEph) is activated by Bob when
he is denied receiving S by the Ephemerizer. This is not truly equivalent to Bob
knowing M since he could have performed an other request to the Ephemerizer
before the expiration time.

– no_expiry_eph(A,B,E,KeyID,KEph) is activated by the Ephemerizer as long as
the key Keph did not expire.

– expiry_eph(A,B,E,KeyID,KEph) is activated by the Ephemerizer when the key
Keph expire. Note that the instant when the key expire is not deterministic, i.e. the
protocol must be secured independently of the key life-time.

Using these predicates, the modeling of the Ephemerizer’s security property in HLPSL
is quite simple, using the LTL notation :

[] ([-] expiry_eph(A,B,E,KeyID,KEph)

=> message_not_decr_bob(A,B,E,KeyID,KEph))

[] (message_decr_bob(A,B,E,KeyID,KEph)

=> no_expiry_eph(A,B,E,KeyID,KEph))

This can be read as: ”At any moment, if somewhere in the past the key KE ph expired,
then Bob must be denied retrieving the decryption key associated to KE ph”; ”At any
moment if Bob is allowed retrieving the decryption key associated to KE ph, then KE ph
must not have expired”.

An integrity attack on M: During the analysis of this protocol with CL-Atse, many
attacks were found on the integrity of any of the internal data of this protocol (M, T , S,
Keph). The most complex ones showed integrity flaws of either S or T . However, since
the central data in this protocol is M only, we choose to present here a simple integrity
attack on M w.r.t. the simple protocol extension presented above, for the strong integrity.
The same attack also works for weak integrity. The scenario is the following, with a, b,
e three agents and i the intruder:

Agent "a" (honest)

plays role Alice

Agent "e" (honest)

plays role Ephem.

Agent "b" (honest)

plays role Bob

Agent "a" (honest)

plays role Alice

Agent "e" (honest)

plays role Ephem.

Agent i (dishonest)

plays role Bob

2nd Session1st Session

We write Xn the object X in session n. First, the session 1 is run normally, thus
adding {M1}inv(KAlice) to the intruder’s knowledge. Then, the intruder can simply im-
personate a in session 2 using {M1}inv(KAlice) instead of {M2}inv(KAlice): the Alice’s sig-
nature is the only thing that the intruder cannot create himself. However, b cannot dif-
ferentiate M1 from M2, so M1 is accepted and the integrity is lost.

Patch n°1, signing M and Sid: The previous attack occurs for the single reason that the
official receiver of M1 could reuse the signature for Alice on it in an other session of the
protocol. To prevent that, we can naturally include SID, or Bob’s name, in the signature:
{M,SID}inv(KAlice) instead of {M}inv(KAlice) .SID. While it may not be obvious at first
that we also need to protect SID or Bob’s name with the signature, this modification
guaranty the integrity of M in the ephemerizer’s protocol. However, here we also want
to guaranty the integrity of the local keys, i.e. S, T , J and Keph. Hopelessly, the sig-
nature on M is unable to prevent the intruder from modifying or replacing any of these
local variables: there exists many attacks on the integrity of these keys, including very
complex ones. These can be seen in the model and analysis files [4] associated to this
work, which include Alice-Bob description of each attack in the tool’s output.

Patch n°2, signing S and Sid: The problem of guarantying the integrity of all M, S, T ,
J and Keph here is that we just cannot sign everything. For example, the analysis shows
that our goal would be reached if we could sign M, T and J (the key generated by Bob),
and that omitting to sign at even one of these objects allows the intruder to perform
an attack. But, in practice it would not be affordable to add more than one signature.
Moreover, signing only the HMAC could look like a good idea, since it contains data
that depends on S, T , and Keph. But still, some attacks remain which can be seen in
the tool’s output in [4]. In fact, it appeared during the analysis process of this protocol

that the only way to guaranty the integrity of all local keys (plus M) is to sign S directly
(along with Sid): this is actually the central key of all the transmission, and signing
it prevents any modification on M (since S encrypts M), on T (since nobody except
Bob can retrieve {{S}KBob}Keph which is encrypted with T), and on Keph (since T ’s
integrity is guarantied). Therefore, the modification w.r.t the original protocol is the
following :

{{S}KBob .Sid}inv(KAlice) replaces {S}KBob everywhere

It is remarkable that the signature must be placed inside the triple encryption: if placed
outside, that is if Alice sends

{{
{{S}KBob}Keph

}
T

.Sid
}

inv(KAlice)
to reduce encryption

time, then an attack still exists on the integrity of M. Similarly, there also exists an
attack if Alice signs {{S}KBob}Keph only.

On the point of view of the encryption time, this is very interesting: we can keep en-
crypting only the “small” message S with KBob (slow, asymmetric encryption), while
we must encrypt {S}KBob and the signature with only KE ph, T and J (fast, symmet-
ric encryption). Moreover, this may even be faster than signing M, since {S}KBob is
probably much smaller and faster to sign than M.

Successful analysis: For all analyzed scenario, no attacks were found on the ephemer-
izer’s protocol with the signature on {S}KBob described above, for all the properties
described in this paper (including secrecy of M and integrity of M,S, T , Keph and J),
and for any of the weak or strong integrity properties (with Bob’s name or Sid respec-
tively). Alternatively, signing S directly gives the same result. Also, signing M with
the correction of patch n°1 still guaranty the integrity of M (alone). For all variants
of this protocol, we analyzed as many execution scenarios as we could, including all
relevant scenarios where honest agents plays at most two roles (that is, scenarios that
are not trivially secure), plus some scenarios with three or four roles per honest agent.
This is actually the limit of the analysis tool for this protocol: with more sessions, no
answer comes in a reasonable time (less than an hour). While it may be interesting to
use parallel computing to raise this limit, we think that the analyzed scenarios are the
most relevant ones for this protocol. While only CL-Atse were used during the mod-
eling process and the generation of all scenario variants to be analyzed, other tools
from the AVISPA project can be run to confirm the final results: OFMC [6] and SAT-
MC [3], giving similar result. Note that OFMC may require small adjustments for the
user-defined predicates of the Ephemerizer’s property. However, SAT-MC don’t, and its
speed greatly increased recently as shown in [16], thus allowing it to go a bit farther
in increasing the number of sessions. We would however not expect new attacks from
that.

5 Conclusion

In this paper, we presented an analysis of the ephemerizer’s protocol by Radia Perlman
with CL-Atse and the AVISPA’s tool-suite. The analysis has three main results: first, it
confirmed that the original protocol is secure against the ephemeral property and the
secrecy of M (even if the ephemerizer is dishonest); second, to reach the integrity of M

(the transmitted data), it showed that we cannot count on the encryption by S to prevent
modifications of M: at least the patch n°1 is required; and third, it showed that while
signing M is a partial solution for a non-modifiable implementation of the ephemerizer’s
protocol, it is in fact much better, and more secure, to sign S or {S}KBob instead (patch
n°2): it is faster for large M, and it guaranty that no run of this protocol can deviate from
the specification (meaning integrity of the protocol execution). For future work, it would
be interesting to have a security proof for the second extension of this protocol for an
unbounded number of sessions, either manually created, or automatically generated by
a tool in a restricted model of protocol: best candidates are TA4SP [7], part of AVISPA,
and ProVerif [8] for over-approximation methods; and SCYTHER [15] for complete
characterization method. Also, a comparition of the state-of-the-art analysis tools can
be found in .

Acknowledgments

The work presented in this paper was partially supported by the FP7-ICT- 2007-1
Project no. 216471, "AVANTSSAR: Automated Validation of Trust and Security of
Service-oriented Architectures" (www.avantssar.eu).

References

1. R. Amadio, D. Lugiez, and V. Vanackère. On the symbolic reduction of processes with
cryptographic functions. Theor. Comput. Sci., 290(1):695–740, 2003.

2. The AVISPA Team. The Avispa Tool for the automated validation of internet security pro-
tocols and applications. In Proceedings of CAV 2005, Computer Aided Verification, LNCS
3576, Springer Verlag.

3. A. Armando, L. Compagna. An Optimized Intruder Model for SAT-based Model-Checking
of Security Protocols. In Proceedings of the Workshop on Automated Reasoning for Security
Protocol Analysis (ARSPA 2004), ENTCS 125(1):91-108, 2005.

4. C. Arora. The Ephemerizer’s specification files in HLPSL. http://www.loria.fr/

~turuani/Ephemerizer_models.zip

5. F. Baader and K.U. Schulz. Unification in the Union of Disjoint Equational Theories: Com-
bining Decision Procedures. In Journal of Symbolic Computing. 21(2): 211-243 (1996).

6. D. Basin, S. Mödersheim, L. Viganò. OFMC: A symbolic model checker for security proto-
cols. In International Journal of Information Security 4(3):181–208, 2005.

7. Y. Boichut, P.-C. Héam, O. Kouchnarenko. Automatic Verification of Security Protocols
Using Approximations. INRIA Research Report RR-5727, October 2005. http://www.
inria.fr/rrrt/rr-5727.html

8. B. Blanchet. An Ecient Cryptographic Protocol Verier Based on Prolog Rules. In Pro-
ceedings of 14th IEEE Computer Security Foundations Workshop (CSFW). IEEE Computer
Society, 2001.

9. M. Boreale. Symbolic trace analysis of cryptographic protocols. In Proceedings of the 28th
ICALP’01, LNCS 2076, pages 667–681. Springer-Verlag, Berlin, 2001.

10. Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. An NP decision procedure for
protocol insecurity with xor. In Proceedings of LICS 2003, 2003.

11. Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. Deciding the Security of Pro-
tocols with Diffie-Hellman Exponentiation and Products in Exponents. In Proceedings of
the Foundations of Software Technology and Theoretical Computer Science (FSTTCS’03),
LNCS 2914, Springer-Verlag, December 2003.

12. Y. Chevalier and L. Vigneron. A Tool for Lazy Verification of Security Protocols. In Pro-
ceedings of the Automated Software Engineering Conference (ASE’01). IEEE CSP, 2001.

13. J. Clark and J. Jacob. A Survey of Authentication Protocol Literature: Version 1.0,
17. Nov. 1997. URL: www.cs.york.ac.uk/~jac/papers/drareview.ps.gz.

14. R. Corin and S. Etalle. An improved constraint-based system for the verification of security
protocols. In SAS, LNCS 2477:326–341, Springer-Verlag, 2002.

15. Cas J.F. Cremers. Unbounded verification, falsification, and characterization of security
protocols by pattern refinement. In Proceedings of the 15th ACM conference on Computer
and Communications Security, ACM, 2008.

16. Cas Cremers and Pascal Lafourcade. Comparing State Spaces in Automatic Protocol Verifi-
cation. In Proceedings of the Seventh International Workshop on Automated Verification of
Critical Systems (AVoCS’07), Elsevier ScienceDirect, 2007.

17. D. Dolev and A.C. Yao. On the Security of Public-Key Protocols. IEEE Transactions on
Information Theory, 29(2):198–208, 1983.

18. C. Meadows. Open issues in formal methods for cryptographic protocol analysis. In Pro-
ceedings of DISCEX 2000, pages 237–250. IEEE Computer Society Press, 2000.

19. J. Millen and V. Shmatikov. Symbolic protocol analysis with products and Diffie-Hellman
exponentiation. In Proceedings of the 16th IEEE Computer Security Foundations Workshop
(CSFW’03), pages 47–61, 2003.

20. R. Perlman. The Ephemerizer: Making Data Disappear. Technical report, Sun Labs, 2005.
At http://www.research.sun.com/techrep/2005/smll-tr02005-140.pdf

21. M. Rusinowitch and M. Turuani. Protocol Insecurity with Finite Number of Sessions is
NP-complete. In 14th IEEE Computer Security Foundations Workshop (CSFW-14), pages
174–190, 2001.

22. M. Turuani. The CL-Atse Protocol Analyser. In Proceedings of RTA, 2006.

