
Formal Modelling and Automatic Detection
of Resource Exhaustion Attacks

Bogdan Groza
Politehnica University and Institute e-Austria

Timişoara, Romania
bogdan.groza@aut.upt.ro

Marius Minea
Politehnica University and Institute e-Austria

Timişoara, Romania
marius@cs.upt.ro

ABSTRACT
Many common protocols: TCP, IPSec, etc., are vulnerable
to denial of service attacks, where adversaries maliciously
consume significant resources of honest principals, leading
to resource exhaustion. We propose a set of cost-based rules
that formalize DoS attacks by resource exhaustion and can
automate their detection. Our classification separates exces-
sive but legal protocol use (e.g., flooding) from illegal pro-
tocol manipulation that causes participants to waste com-
putation time without reaching the protocol goals. We also
distinguish simple intruder intervention leading to wasteful
execution from DoS attacks proper, which can be repeat-
edly initiated. Our rules can highlight attacks that are un-
detectable by the targeted honest agents, or by all protocol
participants. We have successfully tested an implementa-
tion of the methodology in a validation platform on relevant
protocol examples, in what to the best of our knowledge is
the first formal automated analysis of DoS attacks.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—Protocol verification; K.6.5 [Management of
Computing and Information Systems]: Security and
Protection; C.4 [Performance of Systems]: Reliability,
availability and serviceability

General Terms
Security, Verification

Keywords
denial of service, formal modeling, automated verification

1. INTRODUCTION
Protocols that base their security on cryptographic primi-

tives are indispensable nowadays. However, from a computa-
tional perspective, not all cryptographic primitives are cheap.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS ’11, March 22–24, 2011, Hong Kong, China.
Copyright 2011 ACM 978-1-4503-0564-8/11/03 ...$10.00.

While secret-key primitives can be executed in microseconds
on modern computers, public-key primitives require a thou-
sand time more computational steps and can cause resource
exhaustion even on well equipped servers. The problem is
far-reaching: on low computational power devices, such as
sensors, mobile phones, embedded devices, etc., the unjus-
tified execution of even simple cryptographic primitives can
cause resource exhaustion.

In recent years, many protocols have been found vulner-
able to this kind of attacks and modified variants or coun-
termeasures have been proposed. In this paper we focus on
the automatic detection of these attacks, where honest par-
ticipants can be maliciously determined to perform expen-
sive operations, such as public-key encryptions or signatures,
while the adversary consumes significantly less resources.

From the point of view of protocol execution, we consider
useful to separate resource exhaustion DoS attacks in two
main categories:

• Resource exhaustion DoS attacks due to excessive use.
These are attacks in which there is no abnormal use of
the protocol, however the adversary as participant con-
sumes significantly less resources than other principals
thus being capable to cause a DoS. Typical examples
are attacks on the server side, such as flooding, spam,
etc., which do not violate the protocol specification but
can exhaust resources of honest principals.

• Resource exhaustion DoS due to malicious use. In
these attacks the adversary manages to bring the pro-
tocol to an abnormal state (principals are not aware of
their correct identities, shared keys do not match, etc.)
from which the protocol goals cannot be correctly met.
Many protocols with such vulnerabilities exist, proba-
bly the best known is Lowe’s attack [13] on the STS
protocol [8], which we will use as one case study.

Of course, in general denial of service (proper) requires
repetition, and one condition for this to take place is the
ability of the intruder to control the initiation of a session.
This condition is sufficient in the case of protocols vulner-
able to excessive use since there is no abnormal protocol
behaviour in this case, and thus an honest principal can-
not detect being under attack (the only prevention is to
limit the use of the protocol). A commonly used solution to
protect the server side are proof-of-work protocols based on
moderately hard one-way functions, known as cryptographic
puzzles or client puzzles. In this context, several protocols
have been augmented with such constructions, including e-
mail [9], TCP [12], authentication protocols [3], etc.

However, we are also concerned with the second, abusive
kind of attack. In this case, not only are resources spent,
but this is done without achieving the protocol goals. For
this case we also express additional conditions under which
we can determine whether the attack is or not noticeable
by honest principals. We consider these attacks more severe
and their automatic detection to be especially relevant.

As for the causes of resource exhaustion attacks, our anal-
ysis of existing protocols reveals two main design flaws:

• Unbalanced costs between participants. This can cause
DoS inflicted both by adversaries and honest princi-
pals and usually affects the server side. A common
engineering practice adopted in protocols to overcome
this is the aforementioned use of client puzzles.

• Lack of authenticity for the exchanged messages. This
allows adversaries to intrude and compromise a pro-
tocol at lower cost than that incurred by honest par-
ticipants. For example, the adversary can inflict an
unjustified computational cost on some honest princi-
pal, or even steal a principal’s computational work.

Conversely, as our case studies show, most protocols that
do not exhibit these flaws are also resilient to DoS attacks.
Therefore, checking for these two vulnerabilities should be
good engineering practice for designing DoS-resilient proto-
cols. However, DoS attacks can be intricate, and protocol
designs can thus benefit from formal analysis.

To detect DoS attacks, we have expressed our rules in the
ASLan specification language of the AVANTSSAR toolset [4],
a successor to the AVISPA project [5], which is analyzed by
the back-ends CL-Atse [25], OFMC [6] and SATMC [2]. To
enable automatic detection, we need first to integrate costs
in protocol transitions and adversary actions and second to
define rules which use the cost and state information to iden-
tify an attack. We have shown that our rules can be easily
integrated into existing models and work effectively with
representative case studies: STS [8], JFK [1] and some vari-
ants of these protocols, providing an automated analysis of
resource exhaustion attacks.

1.1 Related work
The first and best-known approach to formalize DoS at-

tacks is the cost-based framework developed by Meadows [18]
who also relates DoS resilience to the fail-stop property in-
troduced by Gong and Syverson [11]. Ramachandran [21]
has applied this framework to the JFK protocol and other
protocol fragments, and also links the fail-stop property to
the non-interference property proposed by Focardi et al. [10].
Later, a more in-depth analysis of JFK was done by Smith
et al. [22] who found some attacks to which we refer in the
case studies section. All these analyses were done by hand,
whereas our focus is on the formalization of attack condi-
tions in rules that can be used in a toolset for automated
protocol validation, which to the best of our knowledge has
not been done before.

Besides formalizing attack states, other research has fo-
cused on improving protocols to withstand DoS attacks and
formalizing criteria that need to be met by a protocol for re-
silience to DoS. Matsuura and Imai [16] provide a strategy
for resilience in three-pass authentications (similar to STS)
while later work of the same authors performs an explicit
cost calculation of computational resources involved [17]. A
related protocol is also proposed by Tseng [24].

As for resilience criteria, the most common principle to
avoid DoS is that the initiator of the protocol must consume
more resources than the responder. This is the principle
behind proof-of-work protocols.

Five criteria for DoS resilience are given in [23]. They
include the aforementioned cost comparison indirectly by
allowing the responder to react only to legitimate requests,
where a request is legitimate only if the initiator has solved a
puzzle which consuming more computational resources than
the responder. However the criteria stated in [23] are infor-
mal and relations between them are not clearly established.
For example, a server should“not perform any expensive op-
erations with a client unless” (1) “it is convinced the client
is trying to make a legitimate connection” and (2) “it is con-
vinced that the client wants to talk to B and not another
server M”. However, a request made to a different server
than the intended one should not be considered a legitimate
attempt, thus criterion 2 is implied by criterion 1. Also cri-
terion 4 states that “a malicious party must use a very large
amount of resources” if it wishes to flood the server, how-
ever such a condition is too restrictive for many practical
protocols where the sufficient condition is that the server
will not waste more resources than the client. In particular,
Meadows’ framework and subsequent analyses use a toler-
ance relation which a allows a more flexible way to define the
limit of resource exhaustion. As the criteria are stated infor-
mally, without individual examples for each of them, some
imprecision is unavoidable. The authors also give a formal
definition of service resilience for secure key agreement pro-
tocols. This definition appears problematic as well, illustrat-
ing the need to properly track costs incurred by principals.
According to [23], a protocol is defined as DoS-resilient if
each server only performs expensive operations in a session
that follows an “acceptable pre-session” in which the client
performs the proof of work. The problem with this defini-
tion is that it ignores the server cost in the session, where a
resource-exhausting computation may occur even after the
server has protected itself in the pre-session. Thus, the def-
inition as stated will fail to correctly identify DoS attacks.

In contrast, we consider that one cannot consider proto-
col resilient unless it keeps track of the server cost in each
session. Our restriction of balanced cost between protocol
participants covers criterion 4 from [23], while the first three
criteria are covered by our condition for malicious execu-
tions. This includes the oft-forgotten criterion (3) that the
work of some honest principal cannot be stolen by a mali-
cious adversary.

Regarding proof of work by client puzzles at an algebraic
level, this criterion is included by the stricter requirement of
unforgeability of client puzzles formalized in [7]. It should
be noted that even if a protocol does not allow the work
of a honest client to be stolen, the adversary might still be
able to forge puzzles for which a honest client will waste
computational time to solve. The property of unforgeabil-
ity requires that an adversary is unable to produce a valid
puzzle, thus it offers stronger security, but proving this prop-
erty requires security reductions that are not meant to be
handled symbolically in our framework. Thus, the property
that the work of a client cannot be stolen ensures safety for
the server side but cannot guarantee protection against re-
source exhaustion on the client side, a case often neglected
by protocol designers. The rules we introduce also detect
and flag this case as malicious use.

2. FORMALIZATION AND REASONING

2.1 Protocol and cost model
First we define the protocol model for which we formalize

DoS attacks. We give a simplified account of the ASLan
specification language of the AVANTSSAR toolset [4], on
which we base our implementation.

Definition 1. A symbolic protocol description is a triple
P ::= (InitialState,TransitionRule∗,AttackState∗) formed
by an initial state, a set of transition rules and a set of
attack states, where:

i. the initial state is a conjunction of ground facts (terms),

ii. a transition rule has the form LHS ⇒ RHS where
LHS and RHS are conjunctions of facts, and LHS
may also contain negative facts, not(Fact),

iii. an attack state is a conjunction of positive and negative
facts (like a LHS).

Sending a message, e.g., A→ B : MK , sig(inv(pkA),M)
may be modelled with two rules as shown in Figure 1 and
an initial state: stateA(a, 3, 0).stateB(b, 3, 0). In ASLan,
we denote conjunction of facts F1 . F2 with a dot.

stateA(A, ID, 0)
⇒ stateA(A, ID, 1).iknows(enc(K, M).sig(inv(pkA), M))

stateB(B, ID, 0).iknows(enc(K, M).sig(inv(pkA), M))
⇒ stateB(B, ID, 1)

Figure 1: Protocol fragment in ASLan

Here stateA and stateB are facts tracking state progress
in the two roles, and a, b are principals that can play roles A
and B in a session with identifier 3. Sending a message M is
modelled by making it available to the intruder, iknows(M);
conversely, the intruder might place any known term (includ-
ing the actual message sent) on the communication channel.

Semantics. A symbolic protocol description P defines
a transition system M = (S, I,→), where S is the set of
states, I is the set of initial states, and →⊆ S × S is the
transition relation, defined as follows.

Let T be the set of all terms, and F the set of ground
facts (Boolean terms). Then the state set S = 2F is the
powerset of possible ground facts, and the initial states I
are directly defined as a conjunction (set) of ground facts in
the protocol description P. Informally, a rule LHS ⇒ RHS
specifies a transition that replaces in the current state the
facts in LHS with those in RHS. Formally, there exists
a transition S → S′ iff there exists a rule PF .NF ⇒ R
(with PF and NF sets of positive and negative facts) and a
substitution σ : V → T (with V the set of variables in PF),
such that:

i. σ(PF) ⊆ S (positive facts are satisfied)

ii. (σ′ ◦ σ)(NF) ∩ S = ∅ for all substitutions σ′ such that
(σ′ ◦ σ)(NF) is ground (i.e., negative facts are false)

iii. S′ = S \ σ(PF) ∪ σ(R) (positive facts are subtracted
and right-hand-side facts are added).

To enable cost evaluation, we extend this definition by adding
costs to transition rules as well as to adversary actions.

Definition 2. A cost-augmented protocol description CP
is a symbolic protocol description where:

i. cost(P, 0) holds for all principals in the initial state

ii. transition rules have the form

LHS.cost(P, C1)⇒RHS.cost(P, C2)

where the fact cost(P, C1) denotes that the cost for
principal P before the transition is C1, and cost(P, C2)
states that the cost after the transition is C2.

The cost predicate does not identify a particular session of
the protocol, since both for the adversary and for legitimate
participants, the cost is accumulated over multiple protocol
executions.

We need to extend the notion of cost to the abilities of the
adversary. The adversary is equipped with the well-known
Dolev-Yao abilities over the communication channel: he can
intercept, replay, forge or block messages. Besides this, the
adversary can use computational abilities, which must be
augmented by costs in our model. We consider that costs
are induced by the following operations: modular exponen-
tiation, public-key encryption, decryption and signatures,
denoted cexp, cenc, etc. This leads to the protocol rules syn-
thesized in Equations 1–4. If needed, costs can be attached
to other primitives and in the same manner to the Dolev-Yao
intruder abilities.

iknows(X).iknows(Y).cost(i, C1).sum(C1, cexp, C2)⇒
iknows(exp(X, Y)).cost(i, C2) (1)

iknows(K).iknows(X).cost(i, C1).sum(C1, cenc, C2)⇒
iknows(enc(K, X)).cost(i, C2) (2)

iknows(enc(K, X)).iknows(K).cost(i, C1).sum(C1, cdec, C2)⇒
iknows(X).cost(i, C2) (3)

iknows(X).iknows(Y).cost(i, C1).sum(C1, csig, C2)⇒
iknows(sig(X, Y)).cost(i, C2) (4)

Until now, we have not specified whether cost has an al-
gebraic value or is modelled symbolically. To fix notions, we
use as cost set a monoid, as in Meadows’ framework [18];
our approach is also applicable to numeric costs, depending
on the capabilities of the employed verifiers.

Definition 3. A cost set is a commutative monoid with
operation + over a set S with partial order <, such that
x + y ≥ x for all x, y ∈ S. In particular, we consider the
set S = {0, low, high, expensive} and the sum defined as
∀a, b ∈ S, a+ b = max(a, b).

We implement this cost structure in our protocol model
by defining a fact sum(X,Y, Z) for each pair X,Y where
Z = X + Y , e.g., sum(high, low, high), etc.

We consider the cost of the attacker and the honest agents
directly comparable, by defining a comparison predicate less,
e.g., less(cheap, expensive), less(medium, expensive). Mead-
ows’ framework uses different cost sets for attacker and hon-
est agents, and a relation that defines comparable costs. In
our case, the tolerance relation is given by the comparison
predicate less. We could obtain the same generality by ap-
propriately scaling cost values and/or redefining the compar-
ison. If the cost also depends on the principal, for example,
if for the adversary it may be more expensive to write on
a channel that is already allocated to a different principal,
then these facts can be adapted to include the principal’s

identity as well. Thus the tolerance function in the attack
condition is flexible and can be adapted according to the
requirements of the protocol that is modelled.

2.2 Formalizing the attack condition
It is not straightforward to define and formalize the con-

ditions that characterize a resource exhaustion DoS attack.
The main reference so far, the framework of Meadows [18]
starts out by extending the definition of fail-stop protocols.
The intuition for DoS resilience is that if the adversary suc-
cessfully interferes in a protocol, his cost at that point must
exceed some value related to the cost of the honest agent.
We start from the same point of comparing the cost of the
adversary and of the honest victim. However, we refine this
characterization along several criteria.

The first classification relates to the way in which the in-
truder interferes with protocol execution, causing the DoS
attack. We distinguish attacks due to excessive use, in which
the adversary only acts as an ordinary participant, but can
deplete the resources of honest principals by repeated execu-
tion at lower cost. On the other hand, there are instances of
malicious use where the adversary interferes with the pro-
tocol, resulting in at least one message reception differing
from normal use (more formally, we consider violation of in-
jective agreement [14]). Previous frameworks, such as that
of Meadows do not distinguish along this dimension, since a
common definition for interfering with a message is used.

A second dimension relates to forced repetition by the ad-
versary. Strictly speaking, we consider that denial of service
occurs only if the adversary can repeatedly force a resource-
depleting execution, which requires him to be the initiator
in the protocol (regardless of whether malicious capabilities
are used). To be able to force this repeated resource deple-
tion, the adversary may need to rely on a previous session
started by an honest participant. To model this we will also
consider the execution of multiple sessions. For the case of
malicious executions we do not strictly require the adver-
sary to be able to repeat the attack in order to cause DoS,
i.e., to be the initiator of the protocol. This is because we
consider that not allowing malicious executions is a good
engineering practice and protocols that do not meet this re-
quirement should be spotted, even if the adversary may not
succeed more than once in mounting such an attack.

A third criterion concerns the detectability of the attack
by the victim or some other honest participant. This is im-
portant, since undetectable attacks cannot be countered by
other means than indiscriminately limiting protocol usage.

Thus, the simplest case of resource exhaustion is due ex-
clusively to excessive use: a responder B is vulnerable to a
DoS attack if there is some state where the cost accumulated
by B is higher than the one accumulated by the initiator A
of the protocol, a role that can be potentially played by an
adversary. This is a violation of the design rule that the ini-
tiator should commit more resources than a responder. In
this case, the intruder does not need special abilities, but
can simply play the role of A, initiating sessions at will. To
identify the principal initiating the protocol we augment in
the protocol model the first transition of the initiator role
(assumed to be named A) with the fact initiate(A). The
attack condition is then expressed as follows:

Attack condition 1 (DoS due to excessive use). A
protocol is vulnerable to a resource exhaustion DoS attack
on some principal P if, in a session initiated by the adversary,

an execution state is reached where the cost accumulated the
adversary is less than the one accumulated by P , i.e.,

dos exc(P) := initiate(i).

cost(i, Ci).cost(P, CP).less(Ci, CP) (5)

The semantics of an attack condition written in this way in-
volves an implicit existential quantification over all variables
appearing on the right-hand side.

At this point, the adversary can simply stop executing
protocol steps. Repeated protocol executions can lead to
resource exhaustion for P , who must observe the respon-
der role, incurring higher cost than the adversary in each
execution.

The relation above corresponds to the simple case of a
single protocol session; thus, the costs can be tracked per
protocol principal rather than per execution instance. To
model multiple sessions run in parallel, which also covers
the case of a potential distributed DoS (DDoS), we need
to track the costs cumulated from sessions initiated by the
adversary. This can be achieved by using two distinct tran-
sition rules, one for sessions that are initiated by the adver-
sary (cumulating cost) and one for case of sessions between
honest participants (where no costs need to be tracked).

LHS.initiate(i, ID).cost(P, C1).sum(C1, cstep, C2)

⇒RHS.cost(P, C2) (6)

LHS.initiate(A, ID).not(equal(i, A))⇒RHS (7)

We now define the case when a protocol is maliciously used,
without attaining its intended purpose, wasting computa-
tional resources of honest participants (at lower cost to the
attacker), even though the protocol might not necessarily be
initiated by the intruder or repeatable by it.

To formalize this kind of attack we need to track the cor-
respondence between sent and received messages, and ex-
press whether they pair up to a proper protocol run. For
this purpose, we augment each send transition with a fact
send(S, R, M, L, ID) meaning that message M is sent by agent
S at protocol step labeled L in session ID , intended for re-
ceipt by R. We also augment every receive transition with a
fact recv(S, R, M, L, ID) to denote that message M is received
at protocol step L in session ID by receiver R as coming from
sender S. For correct protocol runs (injective agreement),
it must hold that every recv(S, R, M, L, ID) is preceded by a
matching send(S, R, M, L, ID). Conversely, if for some value
M this agreement is violated, there is an attack on the pro-
tocol functionality (notably, authentication) with respect to
principal R:

tampered(R) :=

recv(S, R, M, L, ID).not(send(S, R, M, L, ID)) (8)

(the other variables are implicitly quantified existentially).
In the following rules, we will use tampered as a macro with
the above definition. With this, we can express the malicious
execution of a protocol as follows:

Attack condition 2 (DoS due to malicious use). A
protocol is vulnerable to malicious use for participant P if
it can reach a state where the adversary cost is lower than
the cost of P , and P accepts a value which differs from the
prescribed protocol execution, i.e.,

dos mal(P) := initiate(i).tampered(P).

cost(i, Ci).cost(P, CP).less(Ci, CP) (9)

The attack conditions for excessive use (5) and malicious
use (9) have the same cost comparison, and differ only in
the extra condition: malicious use implies tampering with
a normal protocol run. We may formulate (9) less restric-
tively by removing the condition initiate(i). As discussed
before, even if the run is not initiated by the attacker and
thus not repeatable at will, a malicious use signifies bad pro-
tocol design, and should be avoided.

As with excessive use, such an attack might appear only
after a correct protocol run, for example, when the adver-
sary can initiate a new session and reuse previous values
(captured from participants, or used in a previous session).
To model this, participant cost must be added over multi-
ple sessions. This is not straightforward because we should
not include costs from sessions where the adversary does not
interfere, as these are not part of the attack.

For this purpose, we need to track the cost of a princi-
pal separately for each session it participates in. We define
a predicate scost(Agent,Cost , ID) that keeps track of the
cost in a particular session, identified by the additional pa-
rameter ID . Each protocol rule is now split into three dif-
ferent rules, depending on whether the session has already
been interfered with by the intruder. This is represented by
the fact bad(ID), initially false for each session. As long as
the intruder does not intervene, the cost cstep for the cur-
rent step is added to the per-session cost for the executing
agent (rule 10). When a session is interfered with (either it
is initiated by the intruder, or there is a receipt of a tam-
pered message), the per-session cost so far and the cost of
the current step are added to the accumulated cost for the
principal, and the fact bad(ID) is asserted (rule 11). Finally,
for a session already marked as bad, the cost of the step is
directly added to the accumulated participant cost (rule 12).

LHS.not(bad(ID)).send(S, P, M, L, ID)

.scost(P, CID, ID).sum(CID, cstep, C
′
ID).

⇒RHS.recv(S, P, M, L, ID).scost(P, C′ID, ID) (10)

LHS.not(bad(ID)).not(send(S, P, M, L, ID))

.cost(P, CP).scost(P, CID, ID)

.sum(CP, cID, C1).sum(C1, cstep, C
′
P)

⇒RHS.recv(S, P, M, L, ID).bad(ID).cost(P, C′P) (11)

LHS.bad(ID).cost(P, CP).sum(CP, cstep, C
′
P)

⇒RHS.bad(ID).cost(P, C′P) (12)

Note that in rule 10 the send guard is needed (to express
correct execution) only in a receive step (with recv)on the
RHS); otherwise, the rule is written without both facts.

The rules for detecting excessive use (5) and malicious
use (9) do not change in the multiple session setting; only
updating the cost per principal changes by splitting the rules
for protocol steps, as defined above.

As argued before, it is worth distinguishing the above de-
fined vulnerabilities are detectable by the protocol partici-
pants. The problem is more severe if, while being depleted of
resources, an honest agent cannot tell that this is happening
maliciously and merely sees an excessive protocol execution.

Attack condition 3 (Undetectable resource exhaus-
tion). Both excessive and malicious executions are espe-
cially dangerous if they are not detected by honest protocol
participants as different from normal executions. In this case
there is no means of protection other than a potentially un-
necessary blanket limitation of executions that affects hon-
est use as well. Participant P cannot detect an attack if it
successfully reaches the final state. For repeatable attacks
initiated by the intruder, and respectively, for malicious ex-
ecutions, this can be expressed as:

dos exc nd(P) := initiate(i).count(P, 0).

cost(i, Ci).cost(P, CP).less(Ci, CP) (13)

dos mal nd(P) := tampered(P).count(P, 0).

cost(i, Ci).cost(P, CP).less(Ci, CP) (14)

We use count(Agent,Num) as a fact to keep track of the
number of sessions in which a principal is still active.

Even though the protocol abuse might not be detectable
by the participant P under DoS attack, it might be de-
tectable by some other participant Q. This makes it possi-
ble to correct the protocol, by adding an extra confirmation
from Q to P , which would then also allow attack detection
by P .

Thus, it becomes relevant to characterize the DoS attacks
in which excessive or malicious of the protocol is not de-
tectable by any of the protocol participants, as such proto-
cols are completely vulnerable, without detection:

dos exc all(P) := initiate(i).
∧

Q∈agents(P)

count(Q, 0).

cost(i, Ci).cost(P, CP).less(Ci, CP) (15)

dos mal all(P) := tampered(P).
∧

Q∈agents(P)

count(Q, 0).

cost(i, Ci).cost(P, CP).less(Ci, CP) (16)

Cost of verification steps. One key modification in
modelling a protocol for DoS analysis in our framework is
that verification steps done by principals also need to be
modelled as protocol transitions. As a result, it becomes
easy to model proof-of-work protocols which involve the ver-
ification of some cryptographic puzzle before continuing the
communication with some principal.

Coordinated attackers. The case of coordinated at-
tackers, where certain protocol messages are reused between
attackers, is also considered in [22]. In their proposal the
cost of a particular reused operation is divided by the num-
ber of attackers, for example, if the cost required by some
computation is expensive and there are n attackers that can
reuse this computation then the cost will be 1

n
× expensive.

Our approach relies on symbolic computation and there-
fore we cannot use algebraic operations such as divisions
or multiplications (although the back-ends that we use can
be modified to handle them as well). Still, the reuse of al-
ready computed values works with the rules defined for the
multiple sessions as these values are already added to the in-
truder knowledge (thus the intruder will not have additional
cost when it reuses them). Thus, in a coordinated attack,
attackers that reuse values will have their cost set to null for
that particular computation.

Bounding the attack cost. In practice, a model checker
may consume a lot of time to verify the existence of an
attack. It becomes critical to restrict the arbitrary possi-
ble actions of an intruder to those that might lead to an
attack. In this case, if one determines the maximal cost
maxcost(CP, P) for principal P over protocol CP (by ex-
ploring the protocol without the intruder), then any DoS
attack on principal P needs to have an intruder cost lower
than maxcost(CP, P). Thus, the adversary actions can be
limited up to this cost. Bounding the search in this manner
can be done for both single and multiple sessions.

3. CASE STUDIES
As a first case study we consider the well-known Station-

to-Station protocol [8], also relevant because of its similari-
ties to the Internet Key Exchange protocol (IKE), which is
part of IPSec and commonly used in practice. The first at-
tacks on it were reported by Lowe [13], and it has been used
as case study by Meadows [18]. The protocol and Lowe’s
attack are depicted in Figure 2. In this attack A tries to
talk to B, but Adv succeeds in impersonating B to A and
uses this to initiate his own session with B.

A→B : αx

B→A : αy,CertB , Ek(sigB(αy, αx))
A→B : CertA, Ek(sigA(αx, αy))

A→Adv(B): αx

Adv→B: αx

B→Adv: αy,CertB , Ek(sigB(αy, αx))
Adv(B)→A: αy,CertB , Ek(sigB(αy, αx))
A→Adv(B): CertA, Ek(sigA(αx, αy))

Figure 2: Station to Station protocol. Lowe’s attack

This attack is sometimes considered minor since Adv can
not actually recover the key shared between A and B. How-
ever, both A and B consume computation time performing
public-key operations for a protocol run that is of no use to
them. In the context of our rules this case study is relevant
as both attack conditions, for excessive and malicious use,
hold. First, this is an attack on B due to excessive use be-
cause he consumes more resources than Adv while Adv is
the initiator of the session. Second, this is a case of mali-
cious use as B receives a value from Adv that was actually
sent by A. For A, the second attack rule also holds, we have
again a case of malicious use, as A receives a value from
Adv(B) that was actually sent by B for the communication
with Adv.

After modelling this protocol in ASLan two of the back-
ends found attack traces. The CL-Atse model checker [25]
reported both attacks from Lowe [13] and verified that the
final state of A is reached, thus making the attack unde-
tectable by A. The OFMC model checker [6] reported a dis-
tinct attack: an adversary initiating a protocol with some
honest principal can replay αx to honest principals, thus sav-
ing himself from performing new computations. If one con-
siders that values like αx have a uniform distribution then
the adversary can initiate conversations with B by simply
sending some random value, or use trivial values (1, 2, etc.)
for the exponent, thus consuming significantly less resources
than honest principals.

The three-pass handshake proposed by Matsuura and Imai

in [16] is also based on the Diffie-Hellman key agreement but
is secure against the previous attacks because the identities
of the principals are included in the exchanged messages,
making it infeasible for an adversary to use a message in-
tended for another principal. Indeed, the previous attack on
STS would not be feasible if these identities were included
in the signature. Matsuura and Imai later proposed ver-
sions of the ISAKMP/Oakley and IKE key agreement [17]
which are resilient to DoS; here, the identities of principals
were included as well. Later, Mao and Paterson [15] in their
study of IKE drew again attention to the good engineering
principle stated previously by Abadi and Needham: if the
identity of the principal is relevant for the message then it
is prudent to include this identity in the message. The same
principle makes the protocol proposed by Tseng [24] secure
against the attack.

The second case study is the Just Fast Keying (JFK) pro-
tocol proposed by Aiello et al. [1], a protocol with provable
security and specifically designed to withstand DoS attacks.
The protocol was first analyzed by Ramachandran [21] and
later in more detail by Smith et al. [22]. Both analyses were
done using the cost-based framework of Meadows. The pro-
tocol was deemed DoS-resilient in [21], provided that mali-
cious messages are handled properly, in particular by using
caching to deal with replay messages and thus amortizing
the cost from expensive verifications. In [22] two weaknesses
against DoS were outlined, the first comes from the reuse
of the Diffie-Hellman exponential and the second involves
coordinated attackers. Moreover, the paper proposed a new
variant that includes client puzzles to increase its resistance.
This variant is depicted in Figure 3: the modifications from
the original JFK consist in adding k as the difficulty level of
the puzzle and sol as the solution of the puzzle, i.e., k indi-
cates the number of leading zeros that H(token||sol) must
produce.

I→R :N ′I , g
i, ID ′R

R→I :N ′I , NR, g
r, grpinfoR, IDR, SR[gr, grpinfoR], token, k

I→R :NI , NR, g
i, gr, token,

{IDI , sa, SI [N ′I , NR, g
i, gr, IDR, sa]}Ke

Ka
, sol

R→I : {SR[N ′I , NR, g
i, gr, IDI , sa], sa′}Ke

Ka
, sol

Figure 3: JFK protocol with client puzzles

We have modelled this protocol and no DoS attack was
found for the side of the responder R. However, although
probably not a concern of the protocol designers, the model
checkers reported attacks for the side of the initiator I.
Namely, an adversary may initiate sessions with responder
R and forward the puzzles that he receives to some honest
principal I; the result is that the adversary can continue his
communication without wasting computational time for the
puzzle, while principal I consumes time to solve a puzzle
that was not intended for him. This is a case of malicious
use that happens because the puzzle token is not bound by
the responder with a signature to the identity of I. The
same happens with the value of the difficulty level k which
is not signed and can be increased by an adversary to make I
spend large amounts of time to solve a more difficult puzzle.
Figure 4 shows the relevant parts of an attack trace reported
by OFMC; the same attack trace was reported by CL-Atse.
In the attack trace, fresh values are written in upper-case
and are suffixed by a counter, a general convention in the

(a, 1)→ i :h(NA(1)).gXA(1).idb1

i→(b, 1) : h(NA(1)).gXA(1).idb1

(b, 1)→ i : h(NA(1)).NB(2).gXB(2).idb.sig(inv(pkB), gXB(2)).

h(hkb.gXB(2).NB(2).h(NA(1)).ipi).k

i→(a, 1) :h(NA(1)).NB(2).gXB(2).idb.sig(inv(pkB), gXB(2)).

h(hkb.gXB(2).NB(2).h(NA(1)).ipi).k

(a, 1)→ i : NA(1).NB(2).gXA(1).gXB(2).

h(hkb.gXB(2).NB(2).h(NA(1)).ipa).
enc(h((gXB(2))XA(1).h(NA(1)).NB(2).1))[ida.sa.

siginv(pkA)[h(NA(1)).NB(2).gXA(1).gXB(2).idb.sa]].
h(h((gXB(2))XA(1).h(NA(1)).NB(2).1))[ida.sa.

siginv(pkA)[h(NA(1)).NB(2).gXA(1).gXB(2).idb.sa]].

sol(h(hkb.gXB(2).NB(2).h(NA(1)).ipi))

Figure 4: Attack trace reported by OFMC

model checkers that we used. The identities of the honest
participants are a and b instead of i and r in order to avoid
confusion with the intruder which is by default i in the back-
ends that we used. The trace reflects the situation when the
adversary forwards the message of some honest I to the re-
sponder R and gets a response that includes a puzzle built
on its own ip which will be useless for I to solve. The cost
of the adversary is zero while the cost of I is expensive. An
attacker may further profit from the puzzles solved by de-
ceived honest participants to perform a distributed attack
on responder R while avoiding the cost of solving the puzzle
on its own. To overcome this, unforgeable puzzles [7] should
be used or otherwise the protocol should ensure by design
that the work of some honest principals cannot be stolen by
a malicious adversary, a principle also stated in [23].

All previous work on formal interpretation and modelling
of resource exhaustion concerns the same kind of key agree-
ment protocols and all case studies available in the cited
literature are, except for the workload, very similar. There-
fore the same paradigm can be always employed: ensure that
all values are authentic (which includes freshness), and that
the client performs more work than the server (potentially
adding some adjustable proof of work on the client side).

However, this paradigm is not suitable for protocols of
a different nature. A relevant example is the well-known
TESLA protocol proposed by Perrig et al. [20], with the
problem of DoS attacks considered later in [19]. This pro-
tocol is of particular interest due to its use in a constrained
environment (sensor networks) where even simple symmet-
ric cryptographic primitives can become a source of resource
exhaustion. Therefore, in this case the usual definition of
cost, that considers public primitives while symmetric prim-
itives are cheap, must be changed. Of particular inter-
est is the attack noted in [19] as DoS on the key chain.
TESLA uses an array of keys generated by the successive
composition of a one-way function f over some initial key
K0, i.e., f(K0), f2(K0), . . . , f i(K0). Each new key KNew is
checked for authenticity by the receiver by verifying that
f j(KNew) = KLast for some j, where KLast is the last au-
thentic key received. Now, if an adversary may mislead a
receiver to believe that a key is received from a distant fu-
ture, the receiver may perform too much computation which
will eventually exhaust its resources. The problem here is
not that the keys sent by the sender are not authenticated,
but that checking for authenticity becomes tedious when the

keys are distant from the last known authentic key. In this
case, the solution is to disallow the receiver to check for more
applications of the one-way function than the time elapsed
from the last authentic key, divided by the disclosure delay.
Thus, good engineering is the solution and not a generic
paradigm as was used or proposed in many key agreements
protocols. However, modelling a protocol such as TESLA in
ASLan is not straightforward as the language does not al-
low explicit definition of features such as the keychain or the
time-triggered nature of the protocol. The AVISPA library
of protocols contains a model for TESLA, but restricted to
only three rounds and too limited to check for DoS attacks.

4. CONCLUSIONS
Resource exhaustion is a highly relevant class of DoS at-

tacks if an economic viewpoint of security protocols is con-
sidered. We have proposed and formalized a set of rules that
can be used to automatically detect potential resource ex-
haustion DoS attacks. Moreover, we have provided a classifi-
cation of different attack situations: excessive vs. malicious
protocol use depending on whether special intruder capabil-
ities are needed; and intruder-controlled initiation vs. one-
time malicious execution, depending on whether the intruder
can force a repeated attack. In addition, we have character-
ized the critical cases when attacks are undetectable by the
honest protocol participants. We have used these rules, im-
plemented in the AVANTSSAR framework, and shown that
this can be effective on two known representative case stud-
ies, STS and JFK. To the best of our knowledge this is the
first formal automated analysis of DoS attacks.

So far, we have only modelled the computational aspect
of selected cryptographic primitives, but one could easily
insert cost associated to memory consumption or other re-
sources. As future work, we will consider assigning costs
to the capabilities of the Dolev-Yao intruder; however, this
would require modelling a custom intruder or changes in the
model checkers. We will also consider, as suggested already
in [18], deriving the cost annotations automatically from the
protocol model, which would significantly ease the usability
of our approach and allow its more extensive practical use.

None of the previously published formal models and anal-
yses use detailed algebraic costs, as Maatsura and Imai have
done for individual protocols [17]. Indeed, to decide resource
exhaustion the simple cost structure proposed by Mead-
ows [18] is sufficient. However, for a more detailed analysis,
automating the calculation in [17] is a relevant future goal.

Acknowledgments
This work is supported in part by FP7-ICT-2007-1 project
216471, AVANTSSAR: Automated Validation of Trust and
Security of Service-oriented Architectures.

5. REFERENCES
[1] W. Aiello, S. M. Bellovin, M. Blaze, R. Canetti,

J. Ioannidis, A. D. Keromytis, and O. Reingold. Just
fast keying: Key agreement in a hostile network. ACM
Transactions on Information and System Security,
7(2):242–273, 2004.

[2] A. Armando and L. Compagna. SAT-based
model-checking for security protocols analysis.
International Journal of Information Security,
7(1):3–32, 2008.

[3] T. Aura, P. Nikander, and J. Leiwo. DOS-resistant
authentication with client puzzles. In 8th International
Workshop on Security Protocols (SP’00), LNCS vol.
2133, pages 170–177. Springer, 2001.

[4] The AVANTSSAR project. http://avantssar.eu/.

[5] The AVISPA project. http://avispa-project.org/.

[6] D. A. Basin, S. Mödersheim, and L. Viganò. OFMC:
A symbolic model checker for security protocols. Int’l.
J. of Information Security, 4(3):181–208, 2005.

[7] L. Chen, P. Morrissey, N. Smart, and B. Warinschi.
Security notions and generic constructions for client
puzzles. In Advances in Cryptology – ASIACRYPT,
LNCS vol. 5912, pages 505–523. Springer, 2009.

[8] W. Diffie, P. C. van Oorschot, and M. J. Wiener.
Authentication and authenticated key exchanges.
Designs, Codes and Cryptography, 2(2):107–125, 1992.

[9] C. Dwork and M. Naor. Pricing via processing or
combatting junk mail. In Advances in Cryptology:
CRYPTO, LNCS vol. 740, pages 139–147. Springer,
1993.

[10] R. Focardi, R. Gorrieri, and F. Martinelli. Secrecy in
security protocols as non interference. In
DERA/RHUL Workshop on Secure Architectures and
Information Flow, 1999.

[11] L. Gong and P. Syverson. Fail-stop protocols: An
approach to designing secure protocols. In Dependable
Computing for Critical Applications 5, pages 79–100,
1998.

[12] A. Juels and J. Brainard. Client puzzles: A
cryptographic countermeasure against connection
depletion attacks. In Network and Distributed Systems
Security Symposium, pages 151–165, 1999.

[13] G. Lowe. Some new attacks upon security protocols.
In 9th IEEE Computer Security Foundations
Workshop, pages 162–169, 1996.

[14] G. Lowe. A hierarchy of authentication specifications.
In 10th IEEE Computer Security Foundations
Workshop, pages 31–44, 1997.

[15] W. Mao and K. G. Paterson. On the plausible
deniability feature of Internet protocols. Published
online, 2002.

[16] K. Matsuura and H. Imai. Protection of authenticated
key-agreement protocol against a denial-of-service
attack. In International Symposium on Information
Theory and Its Applications (ISITA), pages 466–470,
1998.

[17] K. Matsuura and H. Imai. Modification of internet key
exchange resistant against denial-of-service. In
Pre-Proceedings of Internet Workshop (IWS 2000),
pages 167–174, 2000.

[18] C. Meadows. A cost-based framework for analysis of
denial of service in networks. Journal of Computer
Security, 9(1/2):143–164, 2001.

[19] A. Perrig, R. Canetti, D. Song, and J. D. Tygar.
Efficient and secure source authentication for
multicast. In Network and Distributed System Security
Symposium (NDSS), pages 35–46, 2001.

[20] A. Perrig, R. Canetti, J. D. Tygar, and D. Song.
Efficient authentication and signing of multicast
streams over lossy channels. In IEEE Symposium on
Security and Privacy, pages 56–73, 2000.

[21] V. Ramachandran. Analyzing DoS-resistance of
protocols using a cost-based framework. Technical
Report DCS/TR-1239, Yale University, 2002.

[22] J. Smith, J. M. González Nieto, and C. Boyd.
Modelling denial of service attacks on JFK with
Meadows’s cost-based framework. In 4th Australasian
Information Security Workshop, pages 125–134, 2006.

[23] D. Stebila and B. Ustaoglu. Towards
denial-of-service-resilient key agreement protocols. In
14th Australasian Conference on Information Security
and Privacy, LNCS vol. 5594, pages 389–406.
Springer, 2009.

[24] Y.-M. Tseng. Efficient authenticated key agreement
protocols resistant to a denial-of-service attack.
International Journal of Network Management,
15(3):193–202, 2005.

[25] M. Turuani. The CL-Atse protocol analyser. In 17th

Int’l. Conference on Term Rewriting and Applications,
LNCS vol. 4098, pages 277–286. Springer, 2006.

