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Abstract—The security of service-oriented applications is cru-
cial in several contexts such as e-commerce or e-governance. The
design, implementation, and deployment of this kind of services
are often so complex that serious vulnerabilities remain even
after extensive application of traditional validation techniques,
such as testing. Given the importance of security-sensitive service
applications, the development of techniques for their automated
validation is growing. In this paper, we illustrate our formal
framework to the specification and validation of security-sensitive
applications structured in two levels: the workflow level (dealing
with the control of flow and the manipulation of data) and the
policy level (describing trust relationships and access control).
In our framework, verification problems are reduced to logi-
cal problems whose decidability can be shown under suitable
assumptions, which permit the validation of practically relevant
classes of services. As a by-product, it is possible to re-use state-of-
the-art theorem-proving technology to mechanize the verification
process. This is the idea underlying our prototype validation
tool WSSMT, “Web-Service (validation by) Satisfiability Modulo
Theories”, which has been successfully used on two industrial
case studies taken from the FP7 European project AVANTSSAR.

I. INTRODUCTION

A service is a piece of software with a clearly defined set
of interface functionalities that can be invoked according to a
certain ordering specified by a workflow (WF). The WF level
of a service establishes whether a certain operation can be
executed if the values of the state variables (the data flow)
of the service satisfy certain conditions (the control flow) and
the values stored in the state variables may be updated. This
situation is further complicated by the fact that one may create
several instances of the same service: all the instances will
share the same behavior but, at any given time, they may be in
different states, i.e., distinct control locations and values of the
state variables. Thus, (unique) identifiers are required to name
the different particular instances. For example, in the case of
web-services, several (executable) specification languages are
available: the data part can be described by, e.g., WSDL [1],
the control part by, e.g., BPEL [2], and the identifiers by URIs.

While the adoption of services augments the possibility
of using resources and functionalities provided by third-party
applications, it also augments the possibility of unauthorized
use of shared resources and functionalities. This problem is
particularly relevant for security-sensitive applications but can
be a source of problems for virtually any system. An additional

source of security problems is the fact that many deployed
services work over a network (e.g., web-services over the
Internet) where identities should be certified and trusted so
as to enable the deployment of flexible access policies. In
fact, one of the most relevant and hard-to-design parts of
the security level of services is their policy management
(PM) level. Policies specify what operations a service is
granted or denied the right to execute, are usually expressed
in terms of a set of basic facts, and are combined to form
certain access rules. The basic facts depend on the particular
application domain and are usually encapsulated in certificates
whose possession enables the application of access rules. Since
certificates can be produced or revoked at different time points,
PM is an essentially dynamic activity. So, the PM level should
be able to inspect part of the state of the WF of the service
and, in turn, operations performed at the WF level can update
the basic facts used to specify policies so that we have an
interplay also from the WF to the PM.

A widespread design approach to control the delicate inter-
play between the WF and PM levels of a service consists of
clearly separating them and identifying where and how they
interact. This separation is beneficial in several respects for the
design and maintenance of services, and also for their valida-
tion. However, the design, implementation, and deployment
of services are often so complex that serious vulnerabilities
remain even after extensive application of traditional validation
techniques, such as testing. Hence, given the importance of
security-sensitive service applications, a number of techniques
for their automated validation have been developed.

This paper offers an overview of our approach to formally
specify and validate security-sensitive services that are spec-
ified in the bi-dimensional space comprising the WF and the
PM levels. First (Section II), we briefly describe the key
ingredients of our declarative framework. Then (Section III),
we introduce in our framework two formal verification prob-
lems that are crucial for the validation of services: symbolic
execution, which is an extension of standard execution where
many possible behaviors of the service are considered simul-
taneously, and invariant verification, which is the activity of
checking that certain properties hold in any state of a service,
in spite of the complexity of the computations taking place
at the WF and PM levels. We also discuss (Section IV)
how to mechanize the solution for the two verification prob-



lems considered before and describe a prototype tool, called
WSSMT, which allows designers of service-oriented (SO)
applications to gain confidence in their designs. Since our
framework reduces verification problems to logical (satisfiabil-
ity) problems, it is possible to use off-the-shelf state-of-the-
art automated reasoning systems to automatically discharge
the proof obligations encoding the satisfiability problems. The
predictability of the behavior of the automated provers on the
generated proof obligations is obtained by constraining the
class of formulae used to describe the WF and PM levels
together with those describing the possible executions of the
service. In this way, it is possible to reuse decidability results
for fragments of first-order logic that are supported by state-of-
the-art theorem provers. Finally (Section V), we illustrate the
practical viability of our approach by considering the valida-
tion of two case studies inspired by industrial systems, which
have been considered in the context of the FP7 European
project AVANTSSAR [3].

II. A FORMAL TWO-LEVEL SPECIFICATION FRAMEWORK

We regard a security-sensitive service as structured in two
levels: the workflow level (WF)—dealing with the control
of the flow and the manipulation of data—and the policy
management level (PM)—describing trust relationships and
access control rules. Each level is further structured in a static
and a dynamic part; the former specifies the data structures
manipulated by the service for the WF level or the relational
structure used for the PM level, e.g., the user-role assignment
table of a Role-based Access Control system [4], while the
latter describes the possible executions of the service, e.g.,
how a certain integer variable storing the number of clients
being served for the WF level or how a tuple is added/deleted
to a relation in a database for the PM level. All the four
components of our framework (static/dynamic part of the
WF/PM) are symbolically represented by formulae of many-
sorted first-order logic with equality1, which is a well-studied
logic that comes equipped both with a rich catalogue of decid-
able fragments (i.e., classes of formulae for which there exist
algorithms capable of solving their satisfiability problems) and
with several well-engineered automated theorem provers to
support mechanical reasoning in the logic or its fragments.
Our idea was to develop a declarative framework that permits
one to specify the static and dynamic parts of the WF and PM
levels, and then to reduce interesting verification problems to
satisfiability problems in decidable fragments. This paves the
way to building push-button validation techniques for security-
sensitive service applications as demonstrated by our prototype
tool WSSMT.

The notion of theory—i.e, a set of formulae built over a
fixed set of constant, function, and predicate symbols—is used
to formalize the static part of both the WF and the PM levels.
The satisfiability problem modulo a theory T (see, e.g., [6])
consists of establishing whether there exists a model of T (i.e.,

1We assume the usual first-order notions of sort, term, literal, formula,
(grounding) substitution, structure, satisfiability, and validity; see, e.g., [5].

a first-order structure that makes true all the formulae in T )
that makes true a given first-order formula. A set Ax of axioms
for a theory T are such that a model of Ax is also a model
for T (several interesting theories admit finite sets of axioms).

A. WF and PM levels: static part

To formalize the static part of our framework, we
consider three theories: TWF , TPM , and their intersec-
tion Tsub = TWF ∩ TPM , called the substrate theory.

Policy level

Workflow level T
WF

T
PM

Tsub

Fig. 1. Theories for the static part
of the WF and PM levels

Intuitively, as illustrated in
Fig. 1, TWF specifies the WF
level, TPM the PM level, and
Tsub formalizes the interface
between the two levels so as
to ensure that they “agree”
on certain notions. For exam-
ple, Tsub uniquely identifies
the principals involved in the
service and possibly (an abstraction of) the structure of the
resources that the SO application can access or make available.

There is a well-established catalogue of (decidable) theories
describing the most frequent data structures used in software
systems, such as numbers, lists, and arrays. For an overview
of the theories and the related decision procedures for their
satisfiability problems, the reader is pointed to, e.g., [6].
Such theories can be used off-the-shelf also for the static
part of the WF level. To illustrate, we consider the problem
of formalizing the substrate theory (which can be seen as
part of the WF level) for use-case scenarios of services,
where typical executions are described (e.g., by using message
sequence charts) involving only a known and finite number
n of principals. In this case, we use a so-called enumerated
datatype theory in which we have (i) a set C := {c1, ..., cn} of
finitely many constant symbols, corresponding to the unique
identifiers of the principals, and (ii) the axioms

∀x.
∨

ci∈C

x = ci, and
∧

ci,cj∈C and i<j

ci 6= cj

respectively stating that there are at most n identifiers and
that there are at least n distinct identifiers. Another example
of interesting substrate theory is the empty theory, which
corresponds to assuming that there exists a finite but unknown
number of identifiers for principals as we work in many-sorted
first-order logic with equality (so that the equality sign is al-
ways interpreted as an equivalence relation). The empty theory
is particularly useful when one considers invariant verification
and wants to check that certain properties hold regardless of
the number of principals involved in the computations.

Concerning the PM level, theories can be easily derived
from access control policies expressed as logic programs
(see, e.g., [7]). A Horn theory is a theory whose axioms are
formulae of the form

∀x, y. p(x) ⇐ q1(x, y) ∧ · · · ∧ qn(x, y)

where x, y are disjoint tuples of variables, and p(x), qi(x, y)
are atoms (i.e., predicate symbols applied to a tuple of terms



or equalities) where, respectively, at most the variables in x
and x, y may occur (for i = 1, ..., n). Formulae written in this
way are called rules in the logic programming literature, while
q1, ..., qn and p are called the body and the head of the rule,
respectively.

We can then simply formalize in our framework the static
part of a security-sensitive service as the background theory
TSS , obtained by taking the (set theoretic, since the theories
as simply sets of formulae) union of TWF and TPM .

B. WF and PM levels: dynamic part

To formalize the dynamic part of a service, we consider
an extension of the well-established notion of guarded as-
signment, where state variables are updated by applying a
function of the actual values of the variables provided that
a guard is satisfied (expressed as a condition again on the
values of the state variables). In the following, let TSS be
the background theory for the security-sensitive service SS
under consideration. Its state variables are partitioned in two
disjoint tuples: x for the WF level and p for the PM level; each
variable in x is associated to a sort of the background theory
TSS and each variable in p is a predicate symbol not mentioned
in TSS . Using a symbolic representation of state spaces (see,
e.g., [8]), a set s of states of the service SS is represented by
a state formula ϕs(x, p) in TSS , whose only free variables are
in x or p. We consider state formulae belonging to particular
fragments of first-order-logic to describe initial sets of states:

∀i. (ϕWF
I (i, x) ∧ ∀z.

∧
p∈p

p(z)⇔ ϕPM
I,p (i, p, z)) , (1)

where i, z are tuples of variables ranging over identifiers, ϕWF
I

is a quantifier-free formula of TWF , and ϕPM
I,p is a quantifier-

free formula of TPM for each p ∈ p.
To describe transitions, we consider a particular class of

formulae, called transition formulae, corresponding to guarded
assignments over unprimed and primed variables x and p (as
usual, unprimed variables refer to the actual values of the state
variables, while primed variables refer to their values after the
execution of a transition):

∃i, d.

(
G(i, d) ∧

∧
x∈x x

′ = fx(x, i, d) ∧
∀z.

∧
p∈p p

′(z)⇔ ϕp(i, p, z)),

)
(2)

where i, z are tuples of variables ranging over identifiers, and
d is a tuple of variables ranging over some sorts of TWF .
Furthermore, G is a quantifier-free formula called the guard
of the transition (representing its enabling condition), fx is a
term of TSS representing the updates of the WF level, i.e.,
functions of the identifiers i of the principal involved in the
transition, the actual values x of the state variables of the WF
level, and some arbitrary values d (in this way, we can also
express non-deterministic updates). Finally, ϕp is a quantifier-
free formula in TPM whose only free variables are in i, z,
or p representing the updates of the PM level. For a simple
illustration of the application of our framework to a case study,
the reader is pointed to section V-A.

The restrictions imposed on the shapes of state and transi-
tion formulae (plus some additional assumptions on the WF,
PM, and substrate theories) are crucial to derive decidability
results for the satisfiability problems of the proof obligations
arising in the validation of security-sensitive services. This is
described in the next section.

III. VERIFICATION PROBLEMS FOR VALIDATION

We now introduce two verification problems in our frame-
work in order to support validation of security-sensitive ser-
vices. The first is symbolic execution, which is an extension
of standard execution where many possible behaviors of the
service are simultaneously considered. This is achieved by
using state formulae to describe sets of valuations of the state
variables. For each possible valuation of the variables, there
is a concrete system state that is being indirectly simulated.
This technique is particularly useful for the design of security-
sensitive services for which it is standard practice to identify
several scenarios (e.g., by using message sequence charts
involving some interaction between the principals involved in
the operation of the service) as execution paths that the system
should support. Given the high degree of non-determinism and
the subtle interplay between the WF and the PM levels, it is
often far from being obvious that the service just designed
allows one or many of the chosen scenarios. Symbolic execu-
tion allows the designer to consider several scenarios and thus
perform a preliminary sanity check that the service supports
some intended scenarios of execution.

The second verification problem is invariant verification,
which is the activity of checking that a certain property
holds in every state of the service that can be reached by
performing a (finite) sequence of transitions. After checking
that the service under consideration is capable of achieving
certain goals (by using symbolic simulation), the second step
is to assess that certain properties are preserved by any
transition of the service, in spite of the complexity of the
computations taking place at the WF and PM levels. Invariants
can encode several interesting security properties; in fact,
safety can be characterized as “something bad never happens”
(see, e.g., [8]). In our framework, we further restrict invariants
to be encoded by state formulae; in general, safety properties
can be expressed by a class of temporal logic formulae (see
again [8] for an exhaustive discussion on this point). The idea
is to check that the state formula ϕ is an invariant, by using
induction over the computations of the service as follows (this
is known in the literature as the INV rule [8]): (base) the
formula describing the set of initial state implies ϕ, and (step)
if ϕ holds in a given state, then ϕ holds in the state obtained by
executing τ , for each transition τ of the service. If ϕ satisfies
both (base) and (step), we say that it is an inductive invariant.
Unfortunately, the class of state formulae encoding invariant
properties properly contains inductive invariants. Thus, it is
frequently the case that although the state formula ϕ is an
invariant, it is not inductive and the INV rule fails. The
problem is then to guess an appropriate inductive invariant
θ such that θ implies ϕ. Indeed, guessing requires some



ingenuity and several methods have been proposed in the
literature that can be adapted to our context. Such methods
are out of the scope of this paper and we point the interested
reader to [9] for an overview.

Formally, we consider that the state variables x and p of the
service SS to be validated have been identified together with
its background theory TSS .

A. Symbolic execution of security-sensitive services and ap-
plications

In any scenario provided with the service, there is only a
known and finite number of principals. Thus, the substrate
theory Tsub ⊆ TSS is assumed to be an enumerated datatype
theory (recall its definition in Section II). Notice that the
assumption to have a fixed set of identifiers for principals
allows us to replace existential quantifiers over identifiers
in transition formulae (2) with (finite) disjunctions. So, for
symbolic execution, a transition formula is of the form

∃d.(
∨

i∈C(G(i, d) ∧
∧

x∈x x
′ = fx(x, i, d) ∧

∀z.
∧

p∈p p
′(z)⇔ ϕp(i, p, z))),

(3)

where C is the finite set of principal identifiers. Now, since the
principal that executes a transition in a scenario is precisely
identified, instead of the disjunction (3), we only consider the
disjunct that mentions the principals involved in a transition at
a given step of a scenario. Let us consider two state formulae
ϕ and ψ of the form (1), where the universal quantifier is
replaced by a finite conjunction because Tsub is an enumerated
datatype theory by assumption. An instance of a transition of
the service, namely a disjunct τ of (3), leads the service from
state ϕ to state ψ if the formula (ϕ ∧ τ) ⇒ ψ is a logical
consequence of TSS or, equivalently by refutation, ϕ ∧ τ ∧
¬ψ is unsatisfiable modulo TSS . Given a sequence of state
formulae ϕ0, ..., ϕn+1 of the form above and a sequence of
instances of transitions τ1, ..., τn, i.e., disjuncts of the form
(3), the symbolic execution problem is to establish if τi leads
the service from state ϕi to state ϕi+1, for each i = 0, ...n.

This problem can be reduced to n satisfiability problems
modulo the theory TSS of formulae in a certain form. Under
suitable assumptions on the component theories TWF and
TPM , it is possible to show that each one of such satisfiability
modulo theory problems is decidable and conclude that also
the symbolic execution problem is so. We omit here the
technical details and point the interested reader to [10].

B. Invariant verification of security-sensitive services and
applications

For invariant verification, there is a finite but unknown
number n of principals and we want to check that a given
property ϕ is an inductive invariant regardless of n. Thus,
the substrate theory Tsub ⊆ TSS is assumed to be empty as
this allows us to consider all finite sets of principal identifiers
(recall the discussion in Section II about this point). We also
assume that the initial state formula I as well as ϕ are of the
form (1), and that transition formulae τ1, ..., τn are of the form
(2).

WSSMTStatic                      Dynamic Proof 
obligations

ATPSymbolic 
Guarded 

Assignments

Symbolic 
Execution 

Tree

exec

Sat / Unsat

TWF

TSub

TPM

Fig. 2. High level architecture view of WSSMT

The inductive argument sketched above for inductive invari-
ant verification can be encoded by the following two proof
obligations:

(base):I ⇒ ϕ is a logical consequence of TSS or, equiva-
lently, I ⇒ ϕ is unsatisfiable modulo TSS and

(step): (ϕ(x, p) ∧ τi(x, p, x′, p′)) ⇒ ϕ(x′, p′) is a logi-
cal consequence of TSS or, equivalently, ϕ(x, p) ∧
τi(x, p, x′, p′) ∧ ¬ϕ(x′, p′) is unsatisfiable modulo
TSS .

The two satisfiability problems above are decidable under
suitable assumptions (see again [10] for details) and hence
also the invariant verification problem is so.

IV. WSSMT: A MECHANIZATION OF THE SPECIFICATION
AND VERIFICATION PROCESS

There are two ways to mechanize the formal framework
introduced in Section II together with the two verification
problems defined in Section III: the implementation of an ad
hoc tool or the re-use of existing tools via a suitable front-end.
Since the verification problems are reduced to satisfiability
problems modulo theories, it is highly desirable to exploit
the cornucopia of well-engineered and scalable Automated
Theorem Proving (ATP) systems such as resolution-based
provers and Satisfiability Modulo Theories (SMT) solvers.
We chose the second option and implemented a tool called
WSSMT, acronym of “Web-Service (validation by) Satisfiabil-
ity Modulo Theories.” A detailed description of the tool and
its implementation can be found in [11], here we only sketch
its main functionalities and architecture, which is depicted in
Fig. 2.

The main goal of WSSMT is to help users writing specifica-
tions of security-sensitive services structured along the previ-
ously identified directions: WF/PM levels and static/dynamic
parts. Once the (structured) specification is finished, the front-
end will enable the user to create and manipulate a symbolic
execution tree, which compactly represents several possible
symbolic executions of the service under consideration. In-
deed, to create such a tree, whose nodes are labelled with state
formulae and edges with (instances of) transitions, the front-
end must create the appropriate proof obligations (as explained
in Section III) and then invoke an available ATP system,
chosen by the user among those available in the back-end.
Once the ATP has established the satisfiability of the proof



Fig. 3. Symbolic Execution tab

obligation, the front-end updates the symbolic execution tree
or complains about the impossibility of executing the chosen
transition. The client-server architecture of WSSMT follows
these observations as shown in Fig. 2.

The front-end is organized in several tabs corresponding
to the various ingredients of our specification and verifica-
tion framework: Theories, States, Transitions, and Symbolic
Execution. The first two tabs describe the static part of the
specification and are structured in such a way to specify the
WF and PM levels independently. The Transitions tab allows
the user to enter transitions in the form (2). The Symbolic
Execution tab, depicted in Fig. 3, is split in two parts: on
the left, the user can enter the symbolic step to be checked
for executability, while the right part shows the symbolic
execution tree that represents one or more possible scenarios of
execution. More precisely, the left part shows the state formula
from which the symbolic execution step is taken (labelled
Source) and allows the user to enter the formula to which the
execution step should lead (labelled Destination) together with
a transition chosen from the list of available transitions (combo
labelled Transition), whose identifiers have been instantiated
as explained in the combo labelled Instance selection. To send
the resulting proof obligation to a back-end ATP system, the
user should press the button Process.

To ease portability and modularity, WSSMT has been im-
plemented in Java 1.5 as an Ecplise 3.5 plug-in by exploiting
the SWT and JFace libraries [12], [13] for the creation of
multi-platform graphical user interfaces. The concrete input
language of state and transition formulae, as well as of
axioms of the theories in WSSMT, is the DFG syntax [14]. It
has been chosen because it supports many-sorted first-order
logic, it is easy to extend, and several tools are available
for its parsing and translation. in the distribution of the ATP
system SPASS [15], a state-of-the-art resolution-based prover.
Currently, WSSMT has been used with SPASS and the SMT
solver Z3 [16]. The former was chosen because it has the same
input language as the front-end so that it is trivial to generate

the proof obligations to support symbolic execution. However,
it would be easy to integrate any ATP system whose input
language is the TPTP format [17] as there exists a translator
from the DFG syntax to the TPTP format in the distribution
of SPASS. This is left to future work.

Z3 was chosen because it is one of the best SMT solvers
(according to the last competition for such tools [18]) and
complements the reasoning capabilities of SPASS by providing
support for ubiquitous theories as decidable fragments of
arithmetics (while SPASS only supports reasoning in pure
first-order logic). It was easy to create a translator from the
DFG syntax to the SMT-LIB input language [19], which is
one of the input languages of Z3. Furthermore, integration
of further SMT solvers can be done seamlessly as the SMT-
LIB language is their common input language. The evaluation
of the advantages of having several SMT solvers available as
back-ends in WSSMT is also left to future work.

The ATP systems are invoked via calls to the operating sys-
tem provided by Java and their results are parsed by the front-
end in order to update the symbolic execution tree accordingly
(along the lines explained in Section III). Some remarks about
the performances of the ATP systems to discharge typical
proof obligations arising in WSSMT are given in the next
section.

V. CASE STUDIES

To conclude the paper, we show the practical viability
of our framework to validate designs of security-sensitive
services by reporting our experience of applying WSSMT
to the specification and verification of two case studies of
the European project AVANTSSAR (a detailed description
of these and other case studies can be found in [20]). The
former is an E-government application and the latter is a digital
contract signing protocol.

A. Car Registration

The first scenario considers the situation where the request
to register a new car by a citizen is submitted to an on-line
service provided by a Car Registration Office (CRO). For lack
of space, we consider the following simplified scenario (a
more realistic specification developed in our framework can be
found in [10]). A citizen submits his request to an employee
of the CRO, called Ed, who checks if the request can be
accepted, according to some criteria that are abstracted away
in the specification. In case the request can be accepted, Ed
must store it in a central database. To this end, he must send
a request to a Central Repository (CRep) that checks if Ed is
entitled to permanently store such a request and, in this case,
stores the document in the database. Ed can acquire the right
to store documents in the central database only if the head
of the CRO, called Helen, decides so. The certificates of the
roles (being an employee or a head) of the various principals
are generated by a trusted Certification Authority (CA).

We now proceed to formalize this scenario in the framework
of Section II. The substrate is formalized as an enumerated
datatype theory containing four principals: Ed, Helen, CA,



CRep. We model the network over which the principals ex-
change messages as a set N (thus, N is the only state variable
of the WF level): sending a message m over the network
corresponds to adding it to N , i.e. {m} ∪N , and receiving it
corresponds to testing if m is a member of N , i.e. m ∈ N .
A message is a tuple 〈p, x, q〉 where p is the sender, q is
the receiver, and x is the payload of the message. In the
following, we will use standard set-theoretic notation; it is
straightforward to encode everything in first-order logic (see,
e.g., [10] to see how). The PM level also contains just one state
variable knows0, which is a predicate with two arguments: the
first is a principal and the second is a piece of information
(called infon for brevity). Intuitively, knows0(p, x) encodes
the fact that the piece of information x is part of the internal
knowledge of principal p. The PM level has a rich background
theory, which is inspired to the logical language DKAL [21]
for authorization and trust management. The PM theory is
Horn and its axioms are the following rules:

(IK ) knows(p, x)⇐ knows0(p, x)
(TA) knows(p, x)⇐ knows(p, “q said x”) ∧

knows(p, “q tdOn x”)
(P1 ) knows(CRep, “p cans”) ⇐

knows(CRep, “r ish”) ∧
knows(CRep, “p ise”) ∧
knows(CRep, “r said p cans”)

(P2 ) knows(p, “CA tdOn x”)
(P3 ) knows(p, “q tdOn CA said x”)
(P4 ) knows(p, “q tdOn r said q cans”)⇐

knows(p, “r ish”)

where knows is a predicate symbol of the PM theory; p, q, and
r are variables ranging over principals; and x is a variable
ranging over infon. Quotes creates complex infons by com-
bining principals with the keywords said, tdOn, ise, and ish:
“p said x” denotes the fact that principal p communicates the
infon x, “p tdOn x” says that p is trusted on communicating
the infon x (if p decides to communicate it), “p ise” (“p ish”)
is the certificate that p is an employee (head, respectively),
and “p cans” is the certificate that the principal p can store
documents in the central database. Although quotations can
be easily represented as terms of first-order logic, we prefer
to use this informal notation here to enhance readability. The
intuitive reading of the first two rules above is the following:
(IK ) says that internal knowledge is knowledge (in fact, a
principal can gain knowledge also by deriving it using the
rules listed above); (TA) regulates the application of the trust
relationships among principals to derive further knowledge,
by stipulating that a principal p can acquire the infon x if x
has been communicated to p by another principal q, which
is trusted on communicating x by the principal p itself. This
rule is crucial for accepting/refuting the certificates presented
by the various principals to support a certain request (e.g., Ed
asking CRep to store a certain document in its database). The
certificates and the trust relationships among the principals
of the scenario described above are formalized by the last
four rules above, whose intuitive meaning is the following.

(P1 ) says that CRep grants the right to store documents in
its database to a principal p provided that it knows that p
is an employee of the CRO and that the head q of p has
decided to grant him this opportunity (notice that the fact that
q is the head of the CRO should be certified). The remaining
rules represent the following trust relationships: (P2 ) says that
any certificate emitted by CA is trusted, (P3 ) says that any
principal is trusted when it hands over a certificate emitted
by CA, and (P4 ) says that a principal p can trust a certificate
concerning the fact that another principal can store documents
in the central database if p knows that the principal emitting
the certificate is the head of the CRO.

The possible operations of the service considered in this
case study can be modeled by the following two transition
formulae, which are both of the form (2):

∃p, q.∃x.
(

knows(p, x) ∧ N ′ = N ∪ {〈p, said(x), q〉} ∧
∀z1, z2.(knows ′0(z1, z2)⇔ knows0(z1, z2))

)
abbreviated with ∃p, q.∃x. k2m(p, x, q), which describes the
situation where a principal p is willing to send a message with
payload said(x) to another principal q provided that p knows
the infon x (notice that only the WF level state variable N is
updated by this action while the PM level state variable is left
unchanged), and

∃p, q.∃m.


〈p,m, q〉 ∈ N ∧ N ′ = N ∧
∀z1, z2.(knows ′0(z1, z2)⇔(

(z1 = q ∧ z2 = “p said m”) ∨
knows0(z1, z2)

)
)


abbreviated with ∃p, q.∃m.m2k(p,m, q), which describes the
dual situation with respect to the previous one, namely the fact
that a principal p can augment its internal knowledge with the
content of a certain message if there exists a message in the
network with payload m.

The initial state can be formalized by the following state
formula, which is of the form (1):

N = ∅ ∧
∀z1, z2.(knows0(z1, z2)⇔ ((z1 = CA ∧ z2 = “Ed ise”) ∨

(z1 = CA ∧ z2 = “Helen ish”) ∨
(z1 = Helen ∧ z2 = “Ed cans”))),

stating that Ed and Helen are employee and head of the CRO,
respectively, and that Ed is granted the permission to store
documents in the central database by Helen.

At this point, CA can distribute the two role certifi-
cates in its possession to Ed by (symbolically) executing
the following two instances of the first transition above:
k2m(CA, “Ed ise”, Ed) and k2m(CA, “Helen ish”, Ed). This
is followed by Helen sending Ed the certificate of the
permission to store documents in the central database, i.e.
k2m(Helen, “Ed cans”, Ed). At this point, the following facts
can be derived at the PM level (by using rule (IK )):

knows(Ed, “CA said Ed ise”)
knows(Ed, “CA said Helen ish”)

knows(Ed, “Helen said Ed cans”).



Finally, Ed can ask CRep to store the accepted (if the case) car
registration request in the central database since it is possible
to derive that knows(CRep, “Ed cans”), by using the rules in
the PM theory as follows. Consider this application of (P1 ):

(P1 ) knows(CRep, “Ed cans”) ⇐
knows(CRep, “Helen ish”) ∧
knows(CRep, “Ed ise”) ∧
knows(CRep, “Helen said Ed cans”)

In order to derive the conclusion, we must derive the three
premises. This can be done by applying five times the rule
(TA) (twice for each of the two role certificates and once for
the certificate concerning the permission to store documents in
the central database). In this way, we reconstruct (backward)
how knowledge has been propagated between principals and
we discharge the hypotheses of these rule instances by using
(suitable instances of the) rules (P1 )—(P4 ). We omit the
details for lack of space; the interested reader is pointed
to [10] for a full account. Fortunately, the gory details of
these derivations can be mechanized by WSSMT, which is
capable of performing all the reasoning described above for
the symbolical simulation of the scenario automatically in less
than a second (on a standard laptop), by using SPASS as the
back-end ATP system.

B. Digital Contract Signing

The Digital Contract Signing (DCS) case study concerns
a protocol for secure digital contract signing between two
signers, which are assumed to have secure access to a trusted
third party, called the Business Portal (BP) so as to digitally
sign a contract. To achieve this goal, each signer communicates
the contract’s conditions to BP, which creates a digital version
of the contract, stores it, and coordinates the two signers so as
to obtain their digitally signed copies of the contract, which
will be stored for future reference. The BP relies on two
trusted services: the Security Server SServ and the Public
Key Infrastructure PKI. The SServ provides operations for
creating a unique record in a secure database (only BP can
access the SServ and thus modify the database), updating
fields of existing records (i.e., to add signatures provided by
signers), and sealing the signed contract in the record. The
PKI is invoked in order to double check signatures against a
Certificate Revocation List (CRL) so to be sure that during
the execution of the protocol one signer has not misbehaved
(though we have formalized this aspect of the DCS case
study with a high level of abstraction). The DCS protocol
is successful when both signers provide two correctly signed
copies of the same contract and the BP can permanently store
the signed copies of the contract.

Instead of formalizing the scenario directly in WSSMT
from scratch, we have built a BPEL [2] specification of
four processes (one corresponding to a signer, one for BP,
one for SServ, and one for PKI) and we have composed
their instances for the execution of the DCS protocol. Then,
we have run a modified version of the freely available tool
BPEL2oWFN [22] on the composed BPEL process so as to

obtain a first abstraction of the DCS protocol in the input
syntax of WSSMT. The modification of BPEL2oWFN that
we did was simple since the tool is capable of computing a
Petri net specifying the control-flow of the (composed) service
and there is a well-known connection between Petri nets and
Vector Addition Systems (VASs), which can be seen as a
particular class of guarded assignment systems for the WF
level. The details of this relationship are omitted here for lack
of space but can be found in, e.g., [23], [24]. The reader may
wonder why we took this indirect way to obtain a first abstract
specification of DCS: the answer is that the (composed) service
was big and thus was very difficult to write from scratch. To
have an idea of the dimension of the problem, we show in
Fig. 4 the (admittedly almost unreadable) Petri net generated
by BPEL2oWFN consisting of 51 places and 26 transitions.

Once obtained an abstraction of the WF level, we have
manually added the PM level in order to specify the access
control rules for each of the four principals involved in the
protocol. Since the source specification was BPEL, we have
used the RBAC4BPEL framework proposed in [25], which is
an extension of the Role-Based Access Control (RBAC) [4] for
BPEL processes. In this framework, the notion of role is used
as an indirection between users and permissions to execute
certain transitions in the BPEL process (in our abstraction,
corresponding to transitions of the Petri net). To realize this
schema, two relations are needed: one associating users with
roles and one associating roles with permissions (in our case,
transitions since we consider only the right to execute an
action). By taking the join of the two relations, we can
compute the access control relation so as to grant or deny
the right to execute a transition to a certain user. Since it is
well-known how to symbolically represent relations and the
join operation in first-order logic, it was not difficult for us to
create a suitable theory for the PM level and augmenting the
guards and the updates of the transitions in order to integrate
the constraints of the access control rules. Along the same
lines, we have added Separation of Duties constraints (e.g.,
the user signing the contract should not be the same as the
one checking the validity of the signature on the contract)
and Bound of Duties constraints (e.g., the users signing the
contract should be same that have agreed on the conditions of
the contract) authorization constraints. Again, further details
can be found in [24].

Given the abstract specification of the DCS, we have used
WSSMT to perform the symbolic steps corresponding to the
typical scenario of execution described in [20]. Since we used
a VAS for the WF level, we discharged the resulting proof
obligations by invoking the Z3 SMT solver, which provides
native support for arithmetics (while the resolution prover
SPASS does not). Each proof obligation was discharged in few
seconds on a standard laptop and augmented our confidence
in the correctness of the specification.

However, the specification we created was quite abstract
as it ignored the content of the messages exchanged among
the various principals. This was so because we used the tool
BPEL2oWFN to generate the specification of the WF level. In
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Fig. 4. The Petri net representation of the WF level of the DCS case study

fact, such a tool creates a coarse abstraction of BPEL processes
where it is only taken into account if messages are sent and
or received. We decided to manually refine the specification
by adding FIFO queues containing messages with sender,
receiver, and payload. To encode this in first-order theories,
several methods are possible (see, e.g., [26]). Once obtained
the refined specification, we replayed the symbolic execution
corresponding to the typical scenario previously considered
by using again Z3 as the back-end ATP system. Again, all
the proof obligations were discharged in less that a minute on
a standard laptop. Finally, we have also verified some simple
inductive invariant properties encoding the fact that the number
of tokens in the Petri net remains constant.
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