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Abstract

DTL is a distributed temporal logic for reasoning about
temporal properties of distributed systems from the local
point of view of the system’s agents, which are assumed
to execute sequentially and to interact by means of syn-
chronous event sharing. We present a sound and complete
labeled tableaux system for future-time DTL. To achieve
this, we first formalize a labeled tableaux system for rea-
soning locally at each agent, which provides a system for
Sfull future-time LTL, and afterwards we combine the local
systems into a global one by adding rules that capture the
distributed nature of DTL.

1 Introduction

The distributed temporal logic DTL [8] is a logic for
reasoning about temporal properties of distributed systems
from the local point of view of the system’s agents, which
are assumed to execute sequentially and to interact by
means of synchronous event sharing. Distribution is im-
plicit and properties of entire systems are formulated in
terms of the local properties of the agents and their interac-
tion. DTL is closely related to the family of temporal logics
whose semantics are based on the models of true concur-
rency introduced and developed in [14, 15, 19]. In particu-
lar, the semantics of these logics are based on a conflict-free
version of Winskel’s event structures [26], enriched with in-
formation about sequential agents. Different versions have
been given, reflecting different perspectives on how non-
local information can be accessed by each agent.

DTL was first proposed in [8] as a logic for specifying

and reasoning about distributed information systems. The
logic has also been used in the context of security protocol
analysis for reasoning about the interplay between protocol
models and security properties [3, 4]. However, all of the
previous results have been obtained directly by semantic ar-
guments. It would be reassuring, and useful in general, to
have a usable deductive system for DTL. An attractive pos-
sibility in this regard is a labeled tableaux system as deduc-
tions will then closely follow semantic arguments.

In this paper, we present a sound and complete labeled
tableaux system for future-time DTL. Our main contribu-
tions are two-fold. First, we introduce a labeled tableaux
system for full future-time LTL, where reasoning is local.
Due to lack of space, we do not consider here past-time op-
erators like since, although all the results presented in this
paper extend straightforwardly to full LTL (and thus to full
DTL) as we show in [1].

Second, we combine the LTL systems local to each agent
with rules that capture the distributed nature of DTL, via
communication. The tableaux systems for local reasoning
(in LTL) are, as expected, built from formulas labeled with
local state information and relations between these labels
(order and equality). We integrate these systems into a sys-
tem for global reasoning, where we introduce an additional
relation expressing synchronization. We prove the sound-
ness and completeness of the system with respect to DTL
entailment and provide examples of its use. We have not,
for now, addressed the question of efficient proof search and
have included an infinite closure rule that captures even-
tualities which are always delayed. Note, in this regard,
that DTL entailment is decidable as it can be reduced to
entailment in LTL by a suitable polynomial-time syntac-
tic translation and linearization of the distributed models.



However, the distributed properties expressible in DTL are
trace-consistent, or invariant under different linearizations,
and this suggests developing a simpler, dedicated deductive
system for DTL along the lines that we follow here.

We proceed as follows. In §2, we introduce DTL. In
§3, we present our tableaux system for local reasoning and
establish its soundness and completeness with respect to en-
tailment. In §4, we extend our local system into a system for
global reasoning by including a new synchronization rela-
tion between local labels and we also prove soundness and
completeness with respect to entailment. We conclude, in
§5, by comparing with related work and discussing future
work. Due to lack of space, examples have been shortened
and proofs have been omitted; full details are given in [1].
Applications of the logic are also presented in [1], as well
asin [3, 4, 8, 9].

2 The distributed temporal logic DTL

2.1 The syntax and semantics of DTL

DTL is defined over a distributed signature Y =
(Id,{Prop,}icia) of a system, where Id is a finite set of
agents and, for each i € Id, Prop, is a set of local state
propositions. The global language Lpry is defined by the
grammar

Lot =@, (L] ] -+ | Q;, [L5,],

for Id = {i1,...,in}. The local languages L;, for each
i1 € Id, are in turn defined by

,Ci = Propi ‘ _'ﬁi | ﬁliﬁl ‘ Fﬁl | Gﬁz | X£1|
LiWL; | ©;[L;],

with j € Id. A global formula @;[¢] means that ¢ holds for
agent 7. Local formulas, as the name suggests, hold locally
for the different agents. For instance, locally for an agent
1, the operators F, G, X, and W are the usual sometime in
the future, always in the future, next, and weak until (unless)
temporal operators, respectively, while the communication
formula ©);[1)] means that agent 4 has just communicated
(synchronized) with agent j, for whom ¢ held'. We will
use EZ@ to denote the set of all purely temporal formulas of
L;, that is, excluding communication formulas.

Other logical connectives (conjunction, disjunction, etc.)
and temporal operators can be defined as abbreviations, e.g.:

pUy = (FyY) A (W) strong until;

Fo = oVFp now or sometime in the future;
Go ¢ = pAGoy now and always in the future;
P> = o= 0©;] calling.

Note that the DTL syntax here differs from, and improves upon, the
original presentation in [8]. Previously, the operator (©); was overloaded
with @; and its interpretation was therefore context dependent.

Here we use the subscript o to denote the reflexive versions
of the operators. Note also that calling is specific to DTL
as it involves communication: @, [y >>; 1] means that if ¢
holds for agent ¢ then he calls (synchronizes with) agent j,
for whom ¢ must hold.

A local life-cycle of an agent i is a countable (finite or
infinite), discrete, well-founded, total order \; = (E;, <;),
where FE; is the set of local events and <; the local order
of causality. We define the corresponding local successor
relation —; C E; x E; to be the relation such that e —; ¢’
if e <; €’ and there is no ¢’ such that e <; e’ <; e’
As a consequence, we have that <; = —7, i.e., <; is the
reflexive and transitive closure of —;.

A distributed life-cycle is a family A = {\;};ciq of lo-
cal life-cycles such that < = (|J,¢;; <:)* defines a par-
tial order of global causality on the set of all events £ =
Uicm Ei- Note that communication is modeled by event
sharing and thus for some event e we may have e € E; N E;
for i # j. In that case, requiring < to be a partial order
amounts to requiring that the local orders are globally com-
patible, thus excluding the existence of another ¢’ € E;NE;
where both e <; ¢’ and ¢’ <; e.

A local state of agent ¢ is a finite set ¢ C FE; that is
downward-closed for local causality, i.e., ife <; ¢/ and e’ €
& then also e € £. The set =; of all local states of an agent
1 is totally ordered by inclusion and has () as the minimal
element. In general, each non-empty local state ¢ is reached
from the local state £ \ {last;(£)} by the occurrence of an
event that we call last;(£). The local states of each agent
are totally ordered as a consequence of the total order on
local events. Since they are discrete and well-founded, we
enumerate them as follows: 0 is the 0" state: {e}, where e
is the minimum of (F;, <;), is the first state; and, in general,
if £ is the k'" state of agent i and last; (&) —; €/, then £ U
{€'} is the (k+1)*" state of agent i. We denote by ¥ the k2
state of agent i. £ = () is the initial state and &£F is the state
reached from the initial state after the occurrence of the first
k events. In fact, £F is the only state of agent i that contains
k elements, i.e., where |§f| = k. Given e € E;, observe
that (e | i) = {¢’ € E;|e <, e} is always a local state.
Furthermore, if £ is non-empty, then (last;(£) [ i) = &.

An interpretation structure i = (A, o) consists of a dis-
tributed life-cycle A and a family o = {o; };¢jq of labeling
functions. For each i € Id, o; : Z; — p(Prop,) associates a
set of local state propositions to each local state. We denote
(N\i, 0;) by p; and define the global satisfaction relation by

e [ H_DTL @z[‘P] iffp,i ”_z' goiffui,f ”_i gofor every f € Ei,

where the local satisfaction relations at local states are de-
fined by

o pi, &l pifp € 0y(€):
o 1§k mpif pg, & W s
o il o= if pg, & W @ or g, & Ik 1,



o i, & Ik Foif [€] = k and there exists £* € Z; such that k < n
with g4, & I 3
o i, & Ik Goif [§] = kand p;, &P Ik @ for every £ € E; such
that k < n;
o 1, &l Xpif|g] =k, §f+1 exists and ui,ferl IFi @
o 13, &Ik @Wpif [§] = kand p;, £ I o forevery £ € Z; with
k < m; or there exists ' € Z; such that k < n with u;, £ 1= 1,
and p;, £ |- o forevery k < m < n;
o i€ Ik ©jlp] if [§] > 0, last;(§) € Ej, and py, (last; (§) |
ke
The satisfaction conditions for the connectives and the tem-
poral operators defined as abbreviations can be obtained
from the primitive ones in a straightforward way. For ex-
ample, for strong until we have that

o 13, & Ik @Upif |§] = K and there exists £ € =; such thatk < n
with gz, £ Ik 1, and pg, &7 I p forevery k <m < n.

We say that i is a model of I' C Lpyy if p globally satisfies
each of the formulas in I, and given § € Lpy we say that
I entails §, written I" Fpyp 0, if every global model of T" is
also a model of 0. Given ®U{¢} C L;, we write ® F; ¥ to
denote the fact that every local model of ® is also a model
of v or, equivalently, that {Q;[¢] | ¢ € ®} FprL @;[4)].

For instance, @;[p = F(©);[X¢]] holds in a model if
whenever proposition p holds locally at a state of agent ¢
then there must be a future state of agent ¢ where he has just
synchronized with agent j, for whom ¢ will hold in the next
state. Additional examples can be found in [1].

Note that, as is well known, the expressive power of the
U operator is exactly the same of the set {F, G, X, W}. This
can be seen from the following equivalences.

Fe = TUe sometime in the future;
Gy = -F-ep always in the future;
X = 1Uyp tomorrow (next);
oWy = (Gy)V(pUy) weak until (unless).

2.2 Decidability of DTL

It is not difficult to show, as suggested in [8], that DTL
is decidable by means of a translation to LTL. We omit
this translation for the sake of space and refer the reader
to [1]. Since LTL is decidable, any decision procedure for
LTL entailment can thus also be used for DTL (and since
our translation is polynomial, the asymptotic complexity is
identical). The translation relies on the fact that given a dis-
tributed life-cycle A = {(F;, <;) }iem, it is always possible
to linearize the global order on events (F, <): one can de-
fine an injective function f : F — N that preserves the
global causality relation, i.e., if e < ¢’ then f(e) < f(e').
However, the result given in [1] is actually independent of
the chosen linearization function f and in general there may
be many such functions. This means that DTL is trace-
consistent in the sense of [24]; namely, DTL properties can
be checked by considering one arbitrary linearization of the

distributed model, as opposed to checking all possible lin-
earizations. This makes DTL properties particularly well-
suited for efficient model checking using partial-order re-
duction techniques [17], which was explored in [9]. Fur-
thermore, this fact suggests that proof techniques tailored
directly to DTL might have advantages over off-the-shelf
techniques operating on the translations in LTL. This is yet
another motivation for developing a labeled tableaux system
for DTL.

3 Tableaux for local reasoning

We start by developing a labeled tableaux system for rea-
soning locally at each agent. This essentially amounts to a
tableaux system for full future-time LTL (see [1] for the ex-
tension with past-time operators).

From now on, we consider fixed a distributed signature
3. Our tableaux for local reasoning handles four kinds of
local judgments for each agent ¢ € Id: labeled local for-
mulas (excluding communication), equality between labels,
inequality between labels, and a special judgment indicat-
ing absurdity. Local labels denote the local states of agent
i. To define the language of labels, for the given signature
3, we assume fixed a family V = {V,;};cus of sets of label
variables and also use a family F = {F;}icqq of sets of
Skolem function symbols defined as follows:

‘F’i = {fWWQ/J ‘ (»071/] € Ez@>} U {f—‘(tpww) | 9071/} € E?}

Note that while N denotes the natural numbers with 0, we
write N to denote the positive natural numbers, N \ {0}.
The syntax of the local labels of agent ¢ is defined by

Si == (i, T;).

Labels involving the Skolem function symbols will be
used in the tableaux to guarantee the existence of certain
local states associated with the satisfaction of formulas in-
volving the weak until. Although the use of fresh variables
suffices in some cases, weak until, as well as its negation,
may require the existence of states in the model with spe-
cific properties. This requirement makes the use of the
Skolem functions an essential ingredient of our system. We
write v to denote an arbitrary label variable, z, y, and z to
denote arbitrary label terms, and s; to denote an arbitrary
element of S;. We abbreviate z 4 0 as = and if ¢ € N7 then
we write x — c instead of z + (—c), as usual.

The syntax of local judgments of agent i can now be de-
fined by

Ji =8 :L° |8 =88 <S8 | CLOSED.

When convenient, we write s; < s; < s/ instead of s; <
s; and s} < s. The intended meaning of a labeled formula



s; : @ is that ¢ holds at the local state (denoted by) s; of
agent ¢. Equalities and inequalities of local labels of agent ¢
are interpreted directly over the causality ordering. To make
this formal, we extend our notion of interpretation structure
with information concerning labels: we interpret labels as
natural numbers in such a way that the interpretation of a
given local label identifies, by its value, the local state of
the corresponding agent. An assignment on label variables
is a function p; : V; — N. We also need to consider a
fixed interpretation structure p. The denotation of labels
over u and p = {p; }iciq, for each agent ¢ € Id, in symbols
[-1u,p : Si — N, is defined as the following partial function:

o [(4,K)]u,p = ks
o 16 = pi0):

o (4 f oWy (2))]u,p = n provided that

)
- [(¢,2)],p is defined;
- n > [(4,x)]u,p is the least number, if it exists, such that

o & € E;and py, £ I s

o i, EF Ik ¢, for every k such that [(¢,2)] ., < k < n;

[, T (W) (@))],p = 7, provided that

- II(Zz x)]]p.,p is defined;
- n > [(3,2)]u,p is the least number, if it exists, such that
o & € By, 1, & Wi wand pg, EF I s
o #i:if Iff5 9, for every k such that [(¢, z)],,, < k < n;

o [(4,z + k)]u,p = [ x)]u,p + k, provided that [(¢,z)],,p is
defined and [(¢, z)]u,p + &k > 0.

For simplicity, when [(¢, )], depends only on p, we
may write p; ().

One reason why the denotation of labels is partial is that
we do not consider negative values. This is, however, un-
problematic as the labels appearing in relevant places in our
tableaux will always denote non-negative values. A second
reason for the partiality is due to the interpretations of the
Skolem functions. The interpretations of the function sym-
bols for negated weak until f_(,w, are defined depending
on the satisfaction of the corresponding formulas = (o W41)),
in which case the interpretations will have the value of the
first state in the future where ¢ does not hold. The interpre-
tations of the function symbols for weak until (i.e., fowy,) do
not mimic the satisfaction of the corresponding formulas so
closely. Actually, it is enough for our purposes that they are
only defined under the assumption that ¢ does not hold for-
ever in the future. In this case, their interpretations will take
the value of the first state where ) holds. In any case, the
relevant labels of this form appearing in our tableaux will
always arise in contexts where their denotation is defined.

We can now define the satisfaction of local judgments of
agent ¢ at y, given an assignment p:

e u,p I s ¢ if [si]u,p is defined, Egsiﬂ”’p € I, and
MmeSiﬂ%p i s

o u,p Ik s; = s if [s;]u, and [s}].,, are both defined and
[silu.p = [5i]u.ps

o pu,p Ik s; < s} if [s;]u,, and [s}],, are both defined and
[silu.p < [silu.p3

e L, plff CLOSED.

Recall that £1°J#¢ denotes the [si], local state of agent i

in p. We can finally define our tableaux for local reasoning.

Definition 3.1 The local tableaux system 7T;, for agent i €
1d, built over sets of local judgments in 7;, consists of the
rules shown in Figures 1-2. (]

We assume that the reader is familiar with standard ter-
minology and notation for tableaux, for example from [7].
As usual, a branch of a (possibly infinite) tableau is ex-
hausted if no more rules are applicable, closed if it con-
tains CLOSED, and open if it is exhausted but not closed. A
tableau is closed if all of its branches are closed.

Figure 1 contains the rules for the logical connectives,
which are straightforward, and the rules for the temporal
operators, most of which are standard. For instance, the rule
(F) guarantees that in order for F ¢ to hold at state x, there
must exist a future state v where ¢ holds, which is enforced
by the freshness of v (i.e., v is a new variable, not occurring
in the tableaux). In contrast, the rule (— F) concludes that if
— F ¢ holds at state = then ¢ cannot hold in any state y in the
future of x. The additional premise (¢,y) : ¢ is there only
to control the introduction of labeled formulas. The rules
(G) and (—G) are justified similarly. The rule (X) sim-
ply requires the existence of a suitable next state. The rule
(= X) follows a pattern similar to the ones above. The rules
for weak until follow closely the operator’s semantics, but
some explanation is needed to clarify the use of the Skolem
function symbols. Rule (W) splits the satisfaction of ¢ W1)
at state z into two cases: either ¢ holds always in the future,
or there is a future state f_w,, (x) where 9 holds. Of course,
this future state, which we have required to be the earliest
possible, defines together with = an interval where ¢ must
hold. These requirements are then imposed by rule (Ws),
hence justifying the use of the Skolem function f .. The
rules for negated weak until (—W;) and (— W) are similar.

The rules in Figure 2 define the properties of the rela-
tions. Note that we use 0(, x) to denote any local judgment
of agent ¢ where x occurs. The rule (POS) states that the
values of the labels are either O or greater than 0. The rule
(CONG) expresses the congruence of =, i.e., if two labels
(i,z) and (i,y) denote the same local state, then we may
replace some occurrences of x by occurrences of y in any
judgment. Similarly, rule (REFL) asserts the reflexivity of
equality. With rule (FILL), we “fill down” the set of states:
if (i, ) denotes a state and if (¢,y) is smaller than (i, x),
then it should also denote a state (which we express by hav-
ing truth hold there). (TR) forces the order relation to be



Si 1T T@ Si i@ ST

") (=7 CLOSED (ABS)

(i,z) : Fep
(i,z) < (4,v), (i,v) : p

(F) [v fresh]

(G,2): Gy (i,x) < (i,y) (4,9):9

Si =1
SiiTp | s

(G,2): = Fo (,2) <(i,y) (,y):

s (=)
Si:gozsi:"w

=) (==)

X

v
(9) F)

(4,z): =Gy
(i,2) < (4,v), (4,v) : e

(— Q) [v fresh]

(1, 2) < (,y) (5,y):

(hy) e (@)
(i, z) : X (i, )
(hx+1):¢ *)
(i,z) : pWop

(hz+1): e

(=X)

(i,:l?) < 5 < (i,f¢Ww (I))

(i,2) : G | (6,2) < (6 fowy (), (0 Ffowy (2)) 1 9

(i, 2) : ~(p W)

(W1)

(i,2) < si < (i, Fo oWy (@)

(0:2) < (i oWy @)+ (s o (@) - =9 (s g (@) £ 0

(= W)

s; Y, st (“WQ)

Figure 1. Rules for the logical connectives and the temporal operators.

0(2'7 :E) (i’ :E) = (iv y) 9(1', I)

(Pos)

(i,2) = (4,0) | (4,0) < (i, ) 6(i,y)

0(i,z) 0(i,y)

(TR)

(ConG)

(6,x) < (i,y) 6(i,y+c)

0(i, Si: s < s
0D Rew) Siip S <si
(4,z) = (i,2) T

7

(FILL)

(i,z) < (4,y) < (4,2)

(6,2) < (i,y) | (i,2) = (i,9) | (i,y) < (4, 3)

(i,z) < (iy) 00, y+c)

(RSHIFT) [¢ > 0]

(i, z) < (i,y + ¢)

(4, z) < (4,y) O(i,z+c)

(MON) [¢ > 0]

(i, z) < (4,2 — 1) (DTRANS)

0(i,z+1)

(i,z +¢) < (4,y +¢)

(4,0) < (4,z)

(i,z) < (i,z+¢)
(i, — 1) < (i, )

(PRED)
CLOSED

(i,z +¢) < (4,y +¢)

(NLoop) [c < 0]

(LSHIFT) [¢ < 0] (Succ)

(i) < (i,z + 1)

(,x+c) < (i,y) F®c>0
CLOSED (INF)

Figure 2. Rules for the relations.

trichotomic?. (MON) is a form of transitivity, given that y
precedes y + ¢ when ¢ > 0. (DTRANS) is discrete transitiv-
ity: if (¢, x) is smaller than (4,y) and (¢, y) is smaller than
(i, 2), then (%, ) is also smaller than (7, z). In fact, our rule
is more specific and formalizes that (i, x) is actually smaller
than (¢, z—1). (RSHIFT) and (LSHIFT) shift the precedence
order along with addition, taking care that no new states are
introduced. (Succ) and (PRED) order successive states in
appropriate conditions. The closure rule (NLOOP) states
that z cannot precede x + ¢ when ¢ < 0. Finally, (INF) is
an infinitary closure rule: if in a branch there are infinitely
many, distinct, non-negative constants that when added to
(i,2) denote a value smaller than (¢, y), then the branch is
closed.

We illustrate the use of the tableaux system with an ex-

ZNote that the trichotomy rule may lead to considerable branching in
the tableaux. In [1], we have replaced this rule by a set of rules that permit
only controlled forms of trichotomy.

ample. To prove that ((eW1)AX(—1)))=X ¢ is a theorem,
we give a closed tableau in Figure 3 for the negated formula.
Further examples are provided in [1].

Note that we do not claim the independence of all the
proposed rules of our tableaux system 7;. For instance,
it is easy to obtain the rule (NLOOP) from (INF) by in-
finitely many applications of (RSHIFT) and (DTRANS). We
leave the identification of a minimal, equivalent, set of rules
for future work and instead we now establish the sound-
ness and completeness of 7;. We first consider soundness,
where, as usual, a rule is sound if every model that satis-
fies its premises also satisfies at least one of its conclusions.
Of course, a closure rule, i.e., a rule whose conclusion is
CLOSED, is sound if no model satisfies its premises.

Proposition 3.2 The rules of T; are sound.

Before we proceed to the completeness result, we re-
call [18] some technical results about integer constraints



(1,0) : (pWep) AX(=1)
(’i,U) ﬁXQD
(i,v) : (p W)
(1, 0) : X(=¢)

X
(l,v+1): ¢
Succ

/
(1,v) : G
G
(bo+1):¢ (i,v+ 1) < (4, fowy (v))
-X W,
(o+1):—¢ (Z(f;}”jli)z i
ABS -X
CLOSED (l,v+1):—p
ABS
CLOSED

(i, v) < (& fowy (v))
(@, fowy (v)) = ¢

TR
(1,0 4+1) = (i, fowy (v)) (7 fowy (v)) < (4,0 +1)
CONG DTRANS
(l,v+1): 9 (i,v) < (i,v)
ABS NLoor
CLOSED CLOSED

Figure 3. Tableau for —(((o W ) A X(— 1)) = X ).

of the form = < y, where (¢, ) and (7, y) are local labels
in S;. It is clear that any such constraint is of the form
u1 +n < us + m, where u; and us are either label vari-
ables, label terms whose head is a Skolem function, or 0.
Let A = {4, As, ...} be a (possibly infinite) set of such
constraints. The constraint graph for A is a weighted, di-
rected graph G4 = (V4, E 4) constructed as follows:

e V4 = V(A) U {0}, where V(A) is the set of V; vari-
ables and of label terms headed by a Skolem function
occurring in A%;

o Ey={u1 " up|uy+n<us+me Alu{o>
ulueV(A)}

3 At this point, labels whose head is a Skolem function symbol are
treated as if they were simply variables.

As notation, u; — wuy represents the directed edge
(u1,uz) with weight c¢. Intuitively, this means that u; is
at most c larger than us. So, for instance, edges of the sec-

ond kind, 0 A u, express that 0 < u + 0, which is satisfied
when u is non-negative, i.e., a natural number. As usual, a
path p in a graph is a finite sequence of vertices uq, . . ., Un,
where (u;,u;4+1) is an edge, for all ¢ such that 1 < ¢ < n.
The weight of a path is the sum of the weights of its edges.

Lemma 3.3 A (possibly infinite) set of constraints A is sat-
isfiable if and only if for each non-zero node in G 4, there
exists a minimum-weight path in G 4 among all the paths
from 0 to that node.

In our tableaux, every judgment of the form (i,z) <
(i,y) can be equivalently stated as a constraint of the form



x < y— 1. Similarly, a judgment of the form (i, z) = (4, y)
can be equivalently formalized as the pair of constraints
r<yandy < z.

We can now prove our completeness result for the
tableaux system 7;. Since the Skolem function symbols are
intended to be used only as an internal tool of the system,
we will assume that the initial set of judgments contains no
Skolem functions at all. Note, still, that this requirement
could be dropped if we added additional constraints to the
graphs G 4, (1) imposing the required ordering between la-
bels whose head is a Skolem function and their subterms
(e.g., stating that (i,s;) < (%,fowy(s:))), and (2) splitting
the rules (W1) and (—W;) in two, one for introducing the
Skolem symbols and another for introducing their proper-
ties.

Proposition 3.4 Let © be a set of local judgments without
Skolem functions. Then © is satisfiable if and only if there
is a T;-tableau for © with an open branch.

We can then reason about entailment in the logic:

Corollary 3.5 Given ® U {9} € L;, ® F; ¢ if and only if
every exhausted T;-tableau for {(i,0) : Gop | p € D} U
{(i,v) : "1} is closed.

The tableau in Figure 3 shows that F; ((¢ W ) A
X(=9)) = Xe.

4 Tableaux for global reasoning

Our aim is to build a tableaux system 7 for full DTL
by capitalizing on the local tableaux systems for each agent
1 € Id. We will now introduce an additional kind of global
judgment: synchronization between labels. Labeled local
formulas will also be unrestricted, i.e., communication for-
mulas are allowed. Of course, the language of labels is now
distributed. That is, if Id = {41, ...,y } then

Sa=8, 1S,
where the local labels of agent ¢ are defined, as before, by
T, :=N|V;+Z | F(T) + Z,

Si o= (4,7y),

but where the Skolem function symbols extend now also to
formulas involving communication, that is,
Fi = {fowy 0,0 € Li} U{Tfoowy) | 0,0 € Li}.

The syntax of global judgments can now be defined by

j:$1|‘xn|SZNSj,

where the local judgments are extended to also incorporate
communication formulas

Ji=8:L;]|S =8]8 <S;| CLOSED.

The intended meaning of a synchronization judgment
(i,2) > (j,y) is that the event leading to state = of agent ¢
is synchronized with the event leading to state y of agent j.
Semantically, we require a distributed assignment on label
variables p = {p;}icia- The denotation of labels is de-
fined as before. The satisfaction of judgments is also just
extended with

o wp Ik s ba sy if el 2o é-gsj]]u,p 2 0 and
Iasti(ggs"]]""”) = Iastj (ggsjﬂu,p).

We finally define our tableaux for global reasoning,
which we show to be sound and complete.

Definition 4.1 The global tableaux system T for DTL,
built over sets of global judgments in 7, consists of the
rules of 7; for each agent i € Id, together with the global
rules in Figure 4.

Figure 4 contains the rules for communication and syn-
chronization. The rules for communication, ((©)) and
(= ©), follow closely the semantics. Consider, for instance,
(©): if agent 4, in state x, just communicated with agent 7,
for whom ¢ held, then the event leading to state x is syn-
chronized with an event leading to some state v of agent 7,
where ¢ holds (and where v is fresh). The rules for synchro-
nization are also quite intuitive. For instance, (EVT) guar-
antees that since there is no event leading to the initial state,
synchronization is not possible. The rules (SYM), (SELF),
and (TRANS) are straightforward. The rule (ORDER) guar-
antees that local orders are globally compatible. If there is
a chain of synchronizations linking two events of agent ¢,
then these two events preserve the ordering imposed by the
synchronization chain. For instance, assume that the events
leading to states s; and s} of agent 7 have just synchronized
with the events leading to states s; and s;- of agent j, respec-
tively. Furthermore, assume that s; precedes s;-. Then this
order must be reflected in agent ¢ and so s; must precede s;.
This extends to more than two agents in a straightforward
way.

Proposition 4.2 The rules of T are sound.

The completeness of 7 builds on the completeness result
for each of the local systems 7;.

Proposition 4.3 7T is complete, i.e., a set of global judg-
ments © without Skolem functions is satisfiable if and only
if there is a T -tableau for © with an open branch.

We can then reason about entailment in DTL:



(i, 2) : ©;[]
() 2, (62) >4 (j,v)

(©) [v fresh]

(4, ) >< (4, y)
(,0) < (4, z)

(Z7$) : ﬁ@j@ (’Lv I) > (.77 y)

. (~©)
(J:y) e
53 >4 5] S S; SiDAS
] ¥ ¥ k

S = st (SELF) S; DX S (TRANS)

k2
Sig<si. ... sk st

° ® = (ORDER)

Figure 4. Rules for communication and synchronization.

Corollary 4.4 Given T'U {Q;[p]} € L, T Epm Q;f¢] if
and only if every exhausted T -tableau for {(j,0) : Go v |
Q;[¢] e TYU{(i,v) : =} is closed.

For example, as is done in [l1], we can show
that  {@[©,[T] = ©,XOu[T]Q,[@[T] =
©rX©,[TI]} For @;[©;[T] = F©,[T]] by building
a closed 7 -tableau for the corresponding judgments.

5 Related and future work

We have given the first sound and complete tableaux sys-
tem for the distributed temporal logic DTL. To do so, we
first gave a system for reasoning locally (in LTL) at each
agent and afterwards we combined the local systems into
one for global reasoning. We again note that our tableaux
system can be smoothly extended to deal also with past op-
erators, like since, as shown in the full paper [1].

A number of tableaux and other deductive systems have
been given for fragments of LTL, e.g., [5, 7, 10, 11, 12, 13,
16, 20, 21, 22, 23, 25, 27] to name a few. In particular, dif-
ferent kinds of labels are employed to guide the proof search
in the different labeled systems. For instance, [13] consid-
ers time points as labels for formulas, while [5, 20, 21] con-
sider time intervals. It is interesting to note that Schmitt and
Goubault-Larrecq employ constraint graphs to reason about
the completeness of their rules, where labels are time inter-
vals, similar to what we did for our time-point labels. Most
importantly, different fragments of the logic are considered
in the different systems to cope with the difficulties of the
full logic, e.g., the difficulties of formalizing rules for until
and since. The manuscript [20] is an attempt to give a la-
beled tableaux system for the full logic, but unfortunately it
has never been completed.

We have designed our systems with the aim of provid-
ing tableaux for full DTL, including past, but it is interest-
ing to note that our system for local reasoning seems to be
closely related to the natural deduction system for future-
time LTL of [2], which was developed in parallel with our
work. We have begun investigating whether the rules of [2]
would also be suited for the extension to global reasoning in

past and future-time DTL, and plan to report on this soon.
This might be useful since, as noted in the introduction, we
have not yet addressed the question of efficient proof search
and have thus considered an infinite closure rule that cap-
tures eventualities which are always delayed. We will ad-
dress alternative rules, leading to more efficient deduction,
in future work, by adding loop checking as is usually done.
When doing so, we also expect to be able to capitalize on
having based our tableaux system on constraint graphs. Ac-
tually, in the finite case, our Lemma 3.3 is well known to
amount to checking that there are no cycles with negative
sum in the graph [18], which can be done efficiently using
the Bellman-Ford algorithm [6].

Another direction for future work will be to extend our
system to the Distributed Temporal Protocol Logic DTPL
that we have devised to reason about models and properties
of security protocols. In [3, 4], we have applied DTPL in
two different ways: first to verify (or refute) that security
protocols provide the security properties they have been de-
signed for, and second to prove metatheoretic properties of
protocol models that can be used to simplify the verification
of protocols or to search for attacks against them. All of
these results have been obtained directly by semantic argu-
ments. Hence, extending the tableaux system given here to
DTPL will allow us to formalize, and possibly implement,
(meta)reasoning about security protocols. We will report on
this in a forthcoming paper.
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