
Efficient Symbolic Automated Analysis of
Administrative Attribute-based RBAC-Policies

Francesco Alberti
Università della Svizzera

Italiana, Lugano
francesco.alberti@usi.ch

Alessandro Armando
Università di Genova and

FBK-Irst, Trento (Italy)
armando@fbk.eu

Silvio Ranise
Security and Trust Unit,
FBK-Irst, Trento (Italy)

ranise@fbk.eu

ABSTRACT
Automated techniques for the security analysis of Role-
Based Access Control (RBAC) access control policies are
crucial for their design and maintenance. The definition of
administrative domains by means of attributes attached to
users makes the RBAC model easier to use in real scenarios
but complicates the development of security analysis tech-
niques, that should be able to modularly reason about a wide
range of attribute domains. In this paper, we describe an
automated symbolic security analysis technique for adminis-
trative attribute-based RBAC policies. A class of formulae
of first-order logic is used as an adequate symbolic repre-
sentation for the policies and their administrative actions.
State-of-the-art automated theorem proving techniques are
used (off-the-shelf) to mechanize the security analysis pro-
cedure. Besides discussing the assumptions for the effective-
ness and termination of the procedure, we demonstrate its
efficiency through an extensive empirical evaluation.

Categories and Subject Descriptors
D.2 [Software Engineering]: Software/Program Verifica-
tion

General Terms
Security, Automated Verification

Keywords
Access Control, Policy, Symbolic Model Checking

1. INTRODUCTION
Access control is one of the key ingredients to ensure the

security of distributed systems where several users may per-
form actions on shared resources. To guarantee the flexibil-
ity and scalability of these systems, access control is man-
aged by several security officers that may delegate permis-
sions to other users. In this context, security analysis is criti-
cal for the design and maintenance of access control policies.
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In order to analyze access control policies independently
of the mechanisms used to enforce them, the current prac-
tice is to clearly separate these two levels and use a secu-
rity model with a suitable specification language to design
a set of access control policies. Role Based Access Con-
trol (RBAC) [20] is one of the most popular security models
for access policies which regulates access by assigning users
to roles which, in turn, are granted permissions to perform
certain operations. On top of RBAC, several administrative
models have been proposed to address the challenges posed
by administrating large decentralized RBAC policies (see,
e.g., [17] for an in-depth discussion of this and related prob-
lems). The various proposals differ for a variety of aspects
but one of the most important is how administrative domains
are specified; i.e. when a security officer delegates (part of
his) administrative permissions to a (partially) trusted ad-
ministrator, such permissions should be limited to a por-
tion of the RBAC state. The idea underlying ARBAC (see,
e.g., [8]) is to use again RBAC (in particular, role hierar-
chies) to specify administrative domains. However, it has
been observed [16] that this is problematic in real world sce-
narios since administrative domains mirror the organization
structure while roles are based on job functions and these
two notions are often quite different. To alleviate these prob-
lems, several alternatives have been put forward (see [17] for
an overview). As a consequence, automated security anal-
ysis techniques are stretched between expressiveness, to ac-
commodate the various specifications of the administrative
domains, and scalability, to permit security analysis of large
(real world) policies.

The main contribution of this paper is a security anal-
ysis technique based on symbolic model checking that al-
lows us to address the issues of expressiveness and scala-
bility discussed above. We do this by generalizing the no-
tion of ARBAC policy introduced in [24] so as to permit
the uniform mechanization of security analysis techniques
for expressive specifications of administrative access con-
trol policies. We derive these techniques from a recently
proposed symbolic model checking method for infinite state
systems [11]. We detail the derivation in three steps. First,
we introduce a translation from attribute RBAC policies
and their administrative actions to a symbolic representa-
tion by means of formulae in a decidable fragment of first-
order logic, called Bernays-Shönfinkel-Ramsey (BSR) class
(see, e.g., [19]). Second, we explain how to mechanize a pro-
cedure to solve a reachability problem by using the symbolic
representation previously introduced. Third, we show how
to encode an interesting problem for security analysis, called



the user-role reachability problem, as a symbolic reachability
problem defined in the previous step. The symbolic proce-
dure uniformly accommodates the several different specifi-
cations of administrative domains that can be symbolically
represented by formulae in the BSR class. This turns out a
reasonable hypothesis for many practical applications. The
termination of the analysis is guaranteed under the same
hypothesis of representability of the administrative domains
in the BSR class and follows from results in [11].

A second contribution of the paper is a discussion of the
pragmatics of implementing the symbolic reachability pro-
cedure and a report of the experimental results with a proto-
type on a set of significant benchmarks which clearly demon-
strate the scalability of the proposed technique. In fact, our
findings show that our prototype scales better on the set
of problems for ARBAC policies considered difficult in [24]
compared to the state-of-the-art tool described in [24]. Since
our tool can handle more expressive specification of admin-
istrative RBAC policies than that of [24], we propose a new
set of synthetic benchmarks derived from those in [24] that
the tool in [24] cannot handle because of the presence of
an applicability condition on an attribute in the administra-
tive actions. We believe that the new benchmarks are an
interesting contribution per se that will stimulate the devel-
opment of new automated analysis techniques.

The plan of the paper is as follows. Section 2 intro-
duces the notion of attribute RBAC policies and the re-
lated user-role reachability problem. Section 3 provides a
quick overview of symbolic backward reachability and of the
requirements for its mechanization. Section 4 shows that
BSR formulae are an adequate symbolic representation for
attribute RBAC policies. Section 5 describes our implemen-
tation of symbolic reachability and reports on an extensive
(comparative) evaluation on a set of benchmarks. Section 6
compares our approach with related work and concludes.

2. ADMINISTRATIVE RBAC
We generalize the RBAC model of [24] by allowing ad-

ministrative domains to be defined in terms of roles and
attributes. Let U,R, and P be (countably infinite) sets
of users, roles, and permissions, respectively; let An =
{α1, ..., αn} be a finite set of attribute names, Vi be a (count-
ably infinite) set of elements from which αi takes values
(i ∈ {1, ..., n}), Rel1, ...,Relk be relations over V =

Sn
i=1 Vi,

and 7→⊆ U ×An×V be a relation associating a user and an
attribute name with a value. (The relation 7→ is not required
to be functional, although in many cases is so, since the pol-
icy analysis techniques described in the following do not ex-
ploit this assumption.) We write u.αi 7→ v for (u, αi, v) ∈7→,
where v ∈ Vi and call u.αi an attribute, for i ∈ {1, ..., n}.
An attribute RBAC policy is a tuple 〈U,An, V1, ..., Vn, 7→,
R,P, UA, PA,�,Rel1, ...,Relk〉, where UA ⊆ U × R is the
user-role assignment relation, PA ⊆ P × R is the permis-
sion assignment relation; and �⊆ R × R is a partial order
on roles. (If An = ∅, then this notion reduces to that of
hierarchic RBAC policy as defined, e.g., in [24].) Let r1, r2
be roles in R. If r1 � r2, then we say that r1 is more senior
than r2. If (u, r) ∈ UA, then u is an explicit member of UA
and if (u, r′) ∈ UA for some r′ � r and r′ 6= r, then u is an
implicit member of UA. A user u is a member of role r if u
is an explicit or an implicit member of r.

Example 1. Let U = {A,B,C}, P = {E, V }, R =

�
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Figure 1: Graphical representation of ρ0 in Ex. 1

{HR,MA,FT, PT, EM}, PA = {(V,HR), (E,EM))},
and � is the least partial order containing
{(MA,FT ), (FT,EM), (PT, EM)}. An example of
hierarchic RBAC policy [24] is ρ0 = 〈U,R, P, UA0, PA,�〉
where UA0 = {(A,EM), (B,MA), (C, HR)} (see Fig. 1
for a graphical representation). For example, B is an
implicit member of role EM because MA is more senior
than EM (as both (MA,FT ) and (FT,EM) are in �)
and A is an explicit member of role MA. We can extend
this by considering an attribute name age taking values
over the set N of the natural numbers endowed with the
standard ‘greater than’ relation >. An example of attribute
RBAC policy is ρa

0 = 〈U, {age},N, 7→, R, P, UA0, PA,�, >〉
where UA0 is as above, A.age 7→ 25, B.age 7→ 45, and
C.age 7→ 38.

Along the lines of [24], the administrative policies control
changes to the user-role assignment relation UA only, i.e. all
the other sets and relations are constant. Preliminarily, we
define pre-conditions. A role literal is an expression of the
forms r or r for r ∈ R. An attribute literal is an expression
of the forms Relj(αi1 , ..., αir ) or Relj(αi1 , ..., αir ), where Relj
is the name of the relation Rel j ⊆ (Vi1 × · · · × Vir ), j ∈
{1, ..., k}, and i1, ..., ir ∈ {1, ..., n}. An RBAC pre-condition
is a finite set of role literals. An administrative pre-condition
is a finite set of role or attribute literals. In the rest of
this section, let ρ = 〈U,An, V1, ..., Vn, 7→, R, P, UA, PA,�,
Rel1, ...,Relk〉. The user u satisfies the administrative pre-
condition C in the attribute RBAC policy ρ iff for each literal
` ∈ C, we have that (a) if ` is r, then u is a member of the
role r, (b) if ` is r, then u is not a member of the role r,
(c) if ` is Relj(αi1 , ..., αir ), then u.αi1 7→ vi1 , ..., u.αir 7→ vir ,
(vi1 , ..., vir ) ∈ Rel j , and vi1 ∈ Vi1 , ..., vir ∈ Vir , and (d)
if ` is Relj(αi1 , ..., αir ), then u.αi1 7→ vi1 , ..., u.αir 7→ vir ,
(vi1 , ..., vir ) 6∈ Rel j , and vi1 ∈ Vi1 , ..., vir ∈ Vir . Satisfaction
for RBAC pre-conditions is defined similarly, i.e. we consider
just cases (a) and (b) above.

Permission to assign users to roles is specified by the
ternary relation can assign containing tuples of the form
(Ca, C, r) such that a user u ∈ U is assigned to the role
r ∈ R (i.e. it is added as member of that role) by an ad-
ministrator ua ∈ U in the RBAC policy ρ iff ua satisfies
Ca and u satisfies C. The execution of this action updates
ρ to ρ′ = 〈U,An, V1, ..., Vn, 7→, R, P, UA ∪ {(u, r)}, PA,�
,Rel1, ...,Relk〉. Permission to revoke users from roles is
specified by the binary relation can revoke containing tu-
ples of the form (Ca, r) such that a user u ∈ U is revoked
from role r ∈ R (i.e. it is removed from being a member of
that role) by an administrator ua ∈ U in the RBAC policy
ρ iff ua satisfies C (we follow [24] in omitting RBAC con-
ditions when specifying role revocation). The execution of
this action updates ρ to ρ′ = 〈U,An, V1, ..., Vn, 7→, R, P, UA\



{(u, r)}, PA,�,Rel1, ...,Relk〉. The role r to which users are
assigned or removed (namely, the third component of the tu-
ples in the relation can assign and the second component
of the tuples in the relation can revoke) is the target role.
The user ua satisfying the administrative pre-condition of
an action is the administrator of that action. An adminis-
trative RBAC policy is a pair δ = 〈can assign, can revoke〉.
If no attribute literals are used in the administrative pre-
conditions, then it is easy to see that the definitions above
reduce to those in [24] for the ARBAC framework.

Example 2. Let us consider the following two admin-
istrative actions: ({HR, age > 35}, {EM,FT}, PT ) is in
can assign and ({MA, age > 50}, FT ) is in can revoke. In
the attribute RBAC policy ρa

0 of Example 1, user C can
become the administrator of the can assign action since it
belongs to role HR and its age is 38(> 35), and user A satis-
fies the RBAC pre-condition since it is an explicit member of
EM and is not a member of role FT . Hence, the result of ap-
plying the action to ρa

0 is the following attribute RBAC pol-
icy: ρa

1 = 〈U, {age},N, 7→, R, P, UA0∪{(A,PT )}, PA,�, >〉.
The action can revoke cannot be applied neither in ρa

0 nor
in ρa

1 since user B is the only one who is a member of role
MA but is younger than 50.

An administrative RBAC policy δ induces in the obvious
way a transition relation →δ between pairs of RBAC poli-
cies. We denote the reflexive-transitive closure of →δ with
→∗

δ . If ρ and ρ′ are two distinct attribute RBAC policies
such that ρ →∗

δ ρ′, then there exists ρ1, ..., ρn (n ≥ 1) at-
tribute RBAC policies such that ρ1 = ρ, ρi →δ ρi+1 for
i = 1, ..., n − 1, and ρn = ρ′. The set of administrators in-
volved in the sequence of transitions ρ →∗

δ ρ
′ is formed by

the n − 1 administrators of each action ρi →δ ρi+1, for i =
1, ..., n− 1; when ρ = ρ′, the set of administrators is empty.
The user-role reachability problem is stated as follows (it
is a generalization to attribute RBAC policies of the defini-
tion in [24]): let ρ0 = 〈U,An, V1, ..., Vn, 7→, R, P, UA0, PA,�
,Rel1, ...,Relk〉 be an attribute RBAC policy, δ an admin-
istrative RBAC policy, U0 ⊆ U , ug ∈ U be the goal user,
and Rg ⊆ R be a finite set of goal roles, does there exist
a RBAC policy ρ1 = 〈U,An, V1, ..., Vn, 7→, R, P, UA1, PA,�
,Rel1, ...,Relk〉 such that ρ0 →∗

δ ρ1, ug is a member of each
role in Rg, and all the administrators involved in ρ0 →∗

δ ρ1

are in U0 (intuitively, U0 is the set of untrusted users). The
cardinality of the set Rg of goal roles is called the size of the
goal.

3. SYMBOLIC MODEL CHECKING
We review a symbolic model checking procedure for solv-

ing the reachability problem for a system S and a set G of
goal states, i.e. the problem of checking if there exists a se-
quence of transitions leading S from one of its initial states
I to a goal state in G. Instances of this procedure have been
used successfully for finite state model checking based on
binary decision diagrams (see, e.g., [7]) and for infinite state
model checking by using fragments of first-order logic (see,
e.g., [11]).

Formally, we use many-sorted first-order logic with equal-
ity (see, e.g., [9]). We model the system S abstractly using
logical formulas. Let V be a set of state variables corre-
sponding to individual variables in the system S. A state
formula is a formula ϕ(V ) where only the symbols from V
may occur free. In addition to the symbols in V , a state

formula may also contain interpreted symbols like the ‘more
senior than’ relation �. The interpretations of such symbols
are identified by associating to the system S a theory, i.e.—
according to [5]—a pair T = (Σ, C) where Σ is a set of sym-
bols with their arity, called signature, and C is a class of first-
order structures, called the models of T . Usually, C is defined
by a set Ax of sentences (i.e. formulae with no free variables)
as follows: Mod(Ax) = {M |M |= ϕ for every ϕ ∈ Ax},
where |= is the standard satisfaction relation in first-order
logic [9]. When T = (Σ,Mod(Ax)), we say that Ax is the
set of axioms of T . For example, the ‘more senior than’ rela-
tion � is formalized by the theory Tpo = (Σpo,Mod(Axpo))
of partial orders, where Σpo contains the sort symbol Role
and the binary predicate symbol �: Role × Role (written
infix), and Axpo is the finite set of sentences ∀r.(r � r),
∀r1, r2, r3.((r1 � r2∧r2 � r3)⇒ r1 � r3), and ∀r1, r2.((r1 �
r2 ∧ r2 � r1)⇒ r1 = r2). A transition is a formula T (V, V ′)
where V ′ denotes the values of the state variables after the
execution of the transition while V those immediately be-
fore. A transition system is a tuple (V, I(V ), T (V, V ′)) where
V is the set of state variables, I(V ) is a state formula denot-
ing the set of initial states, and T (V, V ′) denote the transi-
tions. In the following, we assume that a transition system
is associated with a theory describing the interpretations of
the symbols which occur in I and T and are not in V ∪ V ′.

Example 3. We now sketch how it is possible to formal-
ize the administrative attribute RBAC policies introduced
in Section 2 as transition systems. Since the administra-
tive actions can modify only the relation UA, we assume
V = {ua}. It is possible to specify the partial order of Exam-
ple 1, by adding to the theory Tpo introduced above, the set
K := {HR,MA,FT, PT,EM} of constants of sort Role and
the following sentences to its axioms:

V
c∈K,d∈K\{c} c 6= d,

∀r.
W

c∈K r = c, MA � FT , FT � EM , PT � EM . Intu-
itively, the first two sentences constrains the interpretations
of Role to contain exactly 6 elements while the remaining
ones restrict the interpretation of � to be the partial order
depicted in Figure 1. We are now ready to write the state
formula describing the relation UA0 of Example 1:

∀u, r.(ua(u, r) ⇔

0@ (u = A ∧ r = EM) ∨
(u = B ∧ r = MA) ∨
(u = C ∧ r = HR)

1A), (1)

which can be seen as an instance of the formula I(V ) de-
scribing the set of initial states. In order to fully describe
the administrative attribute RBAC policies of Examples 1
and 2, we need to furtherly extend the theory associated to
our transition system. So, we introduce the sort Nat with
the numerals 0, 1, 2, ... as constants of this sort, the predi-
cate symbol >: Nat ×Nat (written infix), and the predicate
symbol age : User × Nat .1 The set of axioms are extended
with the sentences to formalize the fact that > is a (strict)
total order, that the numerals are ordered in the obvious
way (e.g., 38 > 25 and 45 > 38), and the sentence

∀u, n.(age(u, n) ⇔

0@ (u = A ∧ n = 25) ∨
(u = B ∧ n = 45) ∨
(u = C ∧ n = 38)

1A) (2)

1Strictly speaking, we should introduce a ternary relation to
represent 7→. Since the set of attribute names is assumed to
be finite, we can equivalently introduce a binary predicate
symbol for each attribute name as we do here.



to describe the values of the attribute age given in Exam-
ple 1. At this point, we have all the ingredients to formalize
the can assign action of Example 2:

∃ua, r, n.(ua(ua, r) ∧ r � HR ∧ age(ua, n) ∧ n > 35)∧
∃u1, r1.(ua(u1, r1) ∧ r1 � EM ∧ ¬∃r2.(ua(u1, r2) ∧ r2 � FT )∧
∀x, y.(ua′(x, y)⇔ ((x = u1 ∧ y = PT ) ∨ ua(x, y))))

The first line of the formula corresponds to the adminis-
trative pre-condition already considered in Example 4, the
second line is the RBAC pre-condition saying that there ex-
ists a user u1 who is a member of role EM and not a member
of role FT , and the last line specifies the effect of the ac-
tion on the user assignment relation, requiring that the pair
consisting of the user u1 and the role PT should be added
to it. The can revoke action can be formalized similarly. It
is sufficient to take the disjunction of the resulting formulae
to build the transition formula T (ua, ua′).

We now describe a procedure to solve the reachability prob-
lem based on the symbolic representation introduced above
(it will be used to solve the user-role reachability prob-
lem, defined at the end of Section 2). Preliminarily, we
recall the notion of satisfiability and validity modulo the-
ories (see, e.g., [5]). A formula ϕ is satisfiable modulo the
theory T = (Σ, C) iff there exists a structure M ∈ C such
that M |= ∃x1, ..., xn.ϕ, where x1, ..., xn are the variables
that occur free in ϕ. A formula ϕ is valid modulo the theory
T = (Σ, C) iff ¬ϕ is unsatisfiable modulo T .

Example 4. To illustrate the importance of satisfiabil-
ity modulo theories, we show how to formally check that
user C can become the administrator of the can assign
action in Example 2. Recall the first line of the for-
mula in Example 3, namely Ca(ua, n) := ua(ua, HR) ∧
age(ua, n) ∧ n > 35 corresponding to the first component
of the can assign action formalizing the can assign action
({HR, age > 35}, {EM,FT}, PT ) in Example 2. It is pos-
sible to see that Ca(ua, n) is satisfiable modulo the theory
of Example 3, and that C is the witness of the variable ua

in Ca(ua, n).

The procedure to solve the reachability problem is based
on backward reachability, a method which iteratively com-
putes the symbolic representations of the set R(V ) of states
from which it is possible to reach a goal state in G(V ),
by applying—finitely many times—the transition T (V, V ′).
Formally, R(V ) is defined by the following (possibly infinite)
sequence of formulae: R0 := G(V ) and

Ri+1(V ) := Ri(V ) ∨ ∃V ′.(Ri(V
′) ∧ T (V, V ′)) for i ≥ 0.

In order to stop computing formulae in the sequence, there
are two criteria. First, we can check whether Rn(V )∧I(V ) is
satisfiable modulo the theory T associated to the transition
system (V, I(V ), T (V, V ′)): in this case, there exists a finite
sequence of the transitions in T that leads the system from
an initial state in I to a state in G. Second, we can check
whether Rn+1(V )⇒ Rn(V ) is valid modulo T : the sequence
R0, R1, ..., Rn, Rn+1 reaches a fix-point at n + 1. Follow-
ing [12], to make the procedure effective, there should exist
two classes E and U of formulae of the theory T such that
(r1) G is in E and it is possible to effectively find a formula
in E which is logically equivalent to ∃V ′.(Ri(V

′)∧T (V, V ′)),
called the pre-image of Ri, (r2) I is in U and it is possible
to effectively check the satisfiability of the conjunction of a

ΣRBAC

U,R, P User ,Role,Permission
V1, ..., Vn Val1, ...,Valn
α ∈ An α : User ×Val i
PA pa : Role × Permission
� �: Role × Role

Rel j ⊆ Vj1 × · · · × Vjr Relj : Val j1 × · · · × Val jr

Table 1: Formalization of attribute RBAC: syntax

formula in E and a formula in U modulo T , i.e. it is decid-
able to check the satisfiability of Ri ∧ I modulo T , (r3) it
is possible to effectively check the validity modulo T of any
pair of formulae in E , i.e. it is decidable to check the validity
of Ri+1 ⇒ Ri modulo T . If these requirements are met, we
say that the theory T with the classes of formulae E and U
is adequate for symbolic model checking.

Although the backward reachability procedure can be
made effective, its termination is not guaranteed:it may be
the case that, Ri(V )∧ I(V ) is unsatisfiable and Ri+1(V )⇒
Ri(V ) is not valid, for every i ≥ 0. This is related to the
definability problem in first-order logic (see, e.g., [9]): the
formulae in the sequence R0, R1, ... may not express the set
of reachable states of the system but only some approxima-
tion. In other words, the backward reachability procedure
is, in general, a semi-decision procedure for the reachability
problem. We will see that for RBAC policies, termination
is guaranteed.

4. SECURITY ANALYSIS: THEORY
We now explain how to automatically translate attribute

RBAC policies and the administrative actions can assign
and can revoke to an adequate theory with two classes of
first-order formulae. We recall the definition of the Bernays-
Shönfinkel-Ramsey (BSR) class (see, e.g., [19]) which con-
tains formulae of the form ∃x1, ..., xn.∀y1, ..., ym.ϕ, where
{x1, ..., xn} and {y1, ..., ym} are disjoint sets of variables
(for n ≥ 0 and m ≥ 0) and ϕ is a quantifier-free for-
mula (i.e. a formula obtained by arbitrary Boolean com-
binations of first-order atoms) where at most the variables
in {x1, ..., xn, y1, ..., ym} may occur and no function symbols
of arity greater than or equal to 1 is allowed. When n = 0
(m = 0), the existential (universal, resp.) prefix is dropped
and the resulting formulae are called universal (existential,
resp.). Both satisfiability and validity of BSR formulae is
decidable (see, e.g., [19]). We will write BSR(Σ) for the
set of BSR formulae built over the signature Σ and we will
tacitly assume that Σ contains only constant and predicate
symbols but no function symbols. If T = (Σ,Mod(Ax)) and
Ax are BSR(Σ), then the satisfiability of a BSR(Σ) formula
ψ modulo T is decidable since we can transform it to the
problem of checking the satisfiability of the conjunction of
the formulae in Ax with ψ, which is a formula in BSR and
hence its satisfiability is decidable.

4.1 A theory for attribute RBAC policies
Let ρ = 〈U,An, V1, ..., Vn, 7→, R, P, UA, PA,�,Rel1, ...,

Relk〉 be a given attribute RBAC policy. We define the sig-
nature ΣRBAC to contain the symbols identified in the second
column of Table 1; in the corresponding row, the first column
shows the associated elements of the attribute RBAC policy
ρ. Notice that we do not introduce a ternary predicate sym-



bol for 7→ and instead use binary predicate symbols corre-
sponding to each attribute in An (see also Example 3). Fur-
thermore, we assume that ΣRBAC also contains countably
many constants of sort User , Role, Permission, and Val i to
represent the elements in U , R, P , and Vi (for i = 1, ..., n),
respectively. (ΣRBAC contains no function symbols.)

Let AxRBAC be a set of axioms containing (a) a set Axdom

of (possibly countably many) BSR(ΣRBAC) formulae de-
scribing the algebraic structure of U , R, P , and Vi (i ∈
{1, ..., n}), (b) the axioms of Tpo in Section 3 with a (finite)
set of ground atoms corresponding to the hierarchy of roles
in ρ (see, e.g., Example 3) formalizing the ‘more senior than’
relation, and (c) a (finite) set Axrel of BSR(ΣRBAC) formu-
lae defining the relations Rel1, ...,Relk of ρ, i.e. for each Rel j ,
we have that (e1, ..., enj ) ∈ Rel j iff Relj(ẽ1, ..., ẽnj ) is satisfi-
able modulo the theory TRBAC := (ΣRBAC ,Mod(AxRBAC )),
where ẽ1, ..., ẽnj are the constants representing the elements
e1, ..., enj (e.g., numerals representing natural numbers as in
Example 3) and nj ≥ 1 is the arity of the relation Rel j . In
many cases, the set Axdom (point (a) above) is either empty
and in this case the sets U , R, P , and Vi are infinite or it is
formalized by the following sentences:

V
1≤i<j≤n ci 6= cj and

∀x.(x = c1∨· · ·∨x = cn), where x (cj) is a variable (constant,
resp.) of sort S ∈ {User ,Role,Permission,Val1, ...,Valn}
(as illustrated in Example 3 for roles).

4.2 Adequacy
We show that the theory TRBAC with its existential and

universal formulae are adequate for symbolic model check-
ing by showing that requirements (r1), (r2), and (r3) of
Section 3 are all satisfied. We assume that our transition
systems have just one state variable ua : User × Role.
Requirement (r1). The goal of a user-role reachability prob-

lem (namely, “there should exist a user who is member
of each role in the set Rg := {r1, ..., rk} of goal roles”)
can be represented by the following existential formula in
BSR(ΣRBAC ):

∃u, r1, ..., rk.

„
ua(u, r1) ∧ · · · ∧ ua(u, rn) ∧
r1 � r̃1 ∧ · · · ∧ rk � r̃k

«
(3)

where r̃j is the constant representing the role r̃j for j =
1, ...k, and k is the size of the goal. The closure under
pre-image computation of the existential class of formulae
in BSR(ΣRBAC ) will be considered below when we explain
how to translate the administrative actions can assign and
can revoke of Section 2 to transition formulae; for the mo-
ment, we assume this to be possible.
Requirement (r2). First, the initial user assignment rela-
tion can be represented by suitable universal formulae since
it can be seen as a database whose content can be speci-
fied by a suitable BSR(ΣRBAC ) as it is well-known in the
logic approach to databases (see, e.g., [10]) and is illustrated
by formula (1) in Example 3. Second, it is always possible
to transform a conjunction of an existential with a univer-
sal formula to a BSR(ΣRBAC ) formula. Thus, we are enti-
tled to conclude the decidability of the satisfiability (modulo
TRBAC ) of conjunction of existential and universal formulae.
Requirement (r3). It is possible to reduce the validity (mod-

ulo TRBAC ) of implications of the form Ri+1 ⇒ Ri to the sat-
isfiability (again, modulo TRBAC ) of Ri+1 ∧ ¬Ri, i.e. a con-
junction of an existential Ri+1 and a universal formula ¬Ri

(being the negation of the existential formula Ri), whose
decidability has been shown for requirement (r2) above.

To conclude the adequacy of TRBAC with its existential
and universal classes, we must discharge the assumption
concerning requirement (r2), namely that it is possible to
compute an existential formula which is logically equivalent
to ∃ua′.(R(ua′) ∧ T (ua, ua′)). To do this, we show how
to symbolically represent can assign and can revoke ac-
tions. Preliminarily, we introduce the translation of Fig-
ure 2 (left) mapping role and attribute literals (recall their
definition in Section 2) to first-order formulae; the map-
ping is extended to a finite set C of literals in the ob-
vious way: [[C]]u :=

V
`∈C [`]u. The formula represent-

ing the can assign action (Ca, C, r) is (4) and that for
the can revoke action (Ca, r) is (5), see right of Figure 2.
With mU0 we denote the formula of BSR(ΣRBAC ) defin-
ing the set U0 of (administrative) users specified in a user-
role reachability problem (recall the definition at the end
of Section 2). For example, if U0 is a finite set of users,
then ∀u.(mU0(u) ⇔

W
c∈U0

u = c); if U0 = U , then mU0 is
assumed to be logically equivalent to true and is omitted
from (4) and (5), as it is the case in the examples of the
paper, for the sake of simplicity.

Example 5. Let us consider again Example 2. The
translation of the can assign action ({HR, age >
35, {EM,FT}, PT ) is the following (after some simple logi-
cal manipulations):

∃ua, u, v, ra, r1.0@ ua(ua, ra) ∧ ra � HR ∧ age(ua, v) ∧ v > 35∧
ua(u, r1) ∧ r1 � EM ∧ ∀r2.(r2 � FT ⇒ ¬ua(u, r2))∧
∀x, y.(ua′(x, y)⇔ Updx,y

+ (ua, u, PT ))

1A ,

which is logically equivalent to the formula in Example 3.
Translating the can revoke action ({MA, age > 50}, FT )
yields

∃ua, u, v, ra.„
ua(ua, ra) ∧ ra �MA ∧ age(ua, v) ∧ v > 50∧
∀x, y.(ua′(x, y)⇔ Updx,y

− (ua, u, FT ))

«
.

If we allow negative role and attribute literals (i.e. those
giving rise to a universal quantifier in the left part of Fig-
ure 2), then it is certainly not possible to satisfy requirement
(r2) because universal quantification is necessary to express
the fact that a user should not be an implicit member of a
certain role as the following example illustrates.

Example 6. Let us compute ∃ua′.(R(ua′) ∧ T (ua, ua′))
where R(ua) := ∃u3, r3.(ua(u3, r3) ∧ r3 � PT ) and T is the
translation of the can assign action in Example 5 as com-
puted in Example 5. After routine logical manipulations, we
derive the formula:

∃ua′.(∀x, y.(ua′(x, y)⇔ Updx,y
+ (ua, u, PT )))∧

∃ua, u, v, ra, r1, u2, r2.0@ Updu3,r3
+ (ua, u, PT ) ∧ r2 � PT∧

ua(ua, ra) ∧ ra � HR ∧ age(ua, v) ∧ v > 35∧
ua(u, r1) ∧ r1 � EM ∧ ∀r2.(r2 � FT ⇒ ¬ua(u, r2))

1A
whose first conjunct can be dropped being always valid
(a tautology is obtained by substituting Updx,y

+ (ua, u, PT )
to ua′) and we are left with a formula in BSR
(Updu3,r3

+ (ua, u, PT ) abbreviates a quantifier-free formula)
with a non-empty universal quantifier prefix.

To overcome this problem, we propose the following alter-
native mapping for negative role literals:

[r]u := ∃r′.(¬ua(u, r′) ∧ r′ = r̃),



[r]u := ∃r′.(ua(u, r′) ∧ r̃ � r′) [r]u := ∀r′.(r̃ � r′ ⇒ ¬ua(u, r′))

[Rel j(αi1 , ..., αir )]u := ∃v1, ..., vr.

„
α(u, v1) ∧ · · · ∧ α(u, vn)∧
Relj(v1, ..., vr)

«
[Relj(αi1 , ..., αir )]u := ∀v1, ..., vr.

„
(α(u, v1) ∧ · · · ∧ α(u, vn))
⇒ ¬Relj(v1, ..., vr)

« ∃ua, u.

„
[[C]]ua

∧ [[C]]u ∧mU0(ua)∧
∀x, y.(ua′(x, y)⇔ Updx,y

+ (ua, u, r̃)))

«
(4)

∃ua, u.

„
[[C]]ua

∧mU0(ua)∧
∀x, y.(ua′(x, y)⇔ Updx,y

− (ua, u, r̃)))

«
(5)

Legenda: x̃ denotes the constant representing the element x, and Updx,y
+ (ua, u, r̃) and Updx,y

− (ua, u, r̃) stand for
((x = u ∧ y = r̃) ∨ ua(x, y)) and (¬(x = u ∧ y = r̃) ∧ ua(x, y)), respectively.

Figure 2: Symbolic representation of administrative actions

which amounts to ignore the role hierarchy when consider-
ing the negation or, equivalently, to require that the user u
is not an explicit member of role r (although u can be an
implicit member of the role). We use explicit negation (im-
plicit negation, resp.) when translating negative role literals
ignoring (taking into account, resp.) the role hierarchy. A
similar observation holds also for negative attribute literals
which introduce universal quantifiers over the values of the
attributes (see left of Figure 2). However, if the axioms in
Axrel allows us to effectively find a BSR formula which is
logically equivalent to the negation of each atomic formula of
the form ¬Relj(v1, ..., vnj ) or, equivalently, the complement
Rel j is definable in the attribute theory, i.e. the subtheory
of TRBAC whose axioms are in Axdom, then we can only use
positive attribute literals and no universal quantifiers will
be generated during translations. In this case, we say that
the attribute theory is closed under negation.

Example 7. Let us consider the linear order > over el-
ements of sort Nat in Example 3. It is possible to obtain
closure under negation by extending the signature with the
predicate symbol ≤: Nat × Nat denoting a weak version of
the linear order > (which can be axiomatized by universal
sentences). In fact, it is easy to show that ¬x > y is equiva-
lent to x ≤ y. Hence, we can replace each negative attribute
literal with a positive one.

We are now ready to prove the following result.

Fact 1. Let TRBAC be the theory associated to a tran-
sition system (ua, I, T ) obtained by the modified version
of the translation in Figure 2 where explicit negation is
used. Furthermore, let the attribute theory of TRBAC be
closed under negation. If R is an existential formula, then
∃ua′.(R(ua′)∧T (ua, ua′)) is logically equivalent to an effec-
tively computable existential formula.

The proof of this fact consists of simple logical manipulations
(similar to those in Example 6) and is omitted for lack of
space. This implies that (under reasonable) assumptions
also the second part of requirement (r2) can be satisfied.

4.3 Automated security analysis
We now explain how to use the symbolic reachability pro-

cedure of Section 3 to solve instances of the user-role reach-
ability problem defined at the end of Section 2.

Let ρ0 be an attribute RBAC policy, δ an administrative
RBAC policy, U0 ⊆ U , ug ∈ U be a goal user, and Rg ⊆ R
be a finite set of goal roles. We want to answer the question:
does there exist a RBAC policy ρ1 such that ρ0 →∗

δ ρ1, ug

is a member of each role in Rg, and all the administrators
involved in ρ0 →∗

δ ρ1 are in U0? First, we create the the-
ory TRBAC as explained in Section 4.1. Second, we build

the formulae (i) I(ua) representing ρ0, (ii) mU0 defining the
set U0, (iii) G for “there exists a user ug who is a member
of each role in Rg,” and (iv) the disjunction T (ua, ua′) of
the formulae representing the actions of the administrative
RBAC policy in δ, as described in Section 4.2. Third, we
run the backward reachability procedure of Section 3 on the
transition system (ua, I(ua), T (ua, ua′)) and goal G(ua). If
it terminates at the n-th iteration because Rn ∧ I is satisfi-
able (modulo TRBAC ), then we conclude that the instance of
the user-role reachability problems is solvable. Otherwise,
i.e. the procedure terminates at the n-th iteration because
Rn ⇒ Rn−1 is valid and Rn ∧ I is unsatisfiable (both mod-
ulo TRBAC ), we conclude that the instance of the user-role
reachability problems is not solvable.

By using the results in [12], it is possible to show that the
backward reachability procedure always terminates under
the same hypotheses for which we have shown the adequacy
of TRBAC with its existential and universal fragments. As
a consequence, we have a push-button technique to solve
security problems for administrative RBAC policies.

To evaluate the practical value of the proposed tech-
nique, an experimental evaluation is mandatory because,
when terminating, the procedure of Section 3 may have non-
elementary complexity (see, e.g., [11]). This is done in the
next section, after a discussion of how to tune the symbolic
reachability procedure for the security analysis of attribute
RBAC policies.

5. SECURITY ANALYSIS: PRACTICE
A client-server architecture is the most obvious choice

to implement the backward reachability procedure of Sec-
tion 3. The client computes pre-images and generates the
proof obligations required to test for fix-point or the non-
empty intersection with the initial set of states. The server
performs the checks for satisfiability modulo TRBAC and can
be implemented by using state-of-the-art automated deduc-
tion systems such as Automated Theorem Provers (ATPs)
or Satisfiability Modulo Theories (SMT) solvers. Although
these tools are quite powerful, preliminary experiments have
shown that the formulae to be checked for satisfiability gen-
erated by the client quickly become very large and are not
easily solved by available state-of-the-art tools. A closer look
at the formulae reveals that they can be greatly simplified.

5.1 Detection of redundancies
We study how to simplify the existential formulae which

are logically equivalent to ∃ua′.(R(ua′) ∧ T (ua, ua′)). Re-
call that T is of the form

W
ti(ua, ua

′) where each ti
is of the form (4) or (5), corresponding to the transla-
tion of can assign and can revoke actions (see Figure 2).
Since ∃ua′.(R(ua′) ∧

W
ti(ua, ua

′)) is logically equivalent to



W
i ∃ua

′.(R(ua′)∧
W
ti(ua, ua

′)), if we could show that some
of its disjuncts are false, we could obtain a more compact
formula. We would like to have a computationally cheap
sufficient condition to drop a disjunct. To this end, let us
consider the case where ti is of the form (4), i.e.

∃ua, u.(Cond(ua, u) ∧ ∀x, y.(ua′(x, y)⇔ Updx,y
+ (ua, u, r̃))),

where Cond(ua, u) abbreviates [[C]]ua
∧[[C]]u∧mU0(ua) (see

Figure 2). Without loss of generality, let us assume that R
is an existential formula of the form ∃x1, ..., xm.(`1∧· · ·∧`k)
where `j is a literal for j = 1, ..., k; let us call this sub-class
of existential formulae as ∃+-formulae. Notice that (3) is an
∃+-formula. For concreteness, let us assume that R(ua) :=
∃u1, r1.(ua(u1, r1)∧r1 � r̃1) and compute its pre-image with
respect to the can assign action considered above:

∃ua′.

0@ ∃u1, r1.(ua
′(u1, r1) ∧ r1 � r̃1)∧

∃ua, u.

„
Cond(ua, u)∧
∀x, y.(ua′(x, y)⇔ Updx,y

+ (ua, u, r̃))

« 1A ,

which simplifies to

∃ua, u.(Cond(ua, u) ∧ r̃ � r̃1)∨
∃ua, u, u1, r1.(Cond(ua, u) ∧ r1 � r̃1 ∧ ua(u1, r1)),

by recalling that Updu1,r1
+ (ua, u, r̃1) abbreviates (u1 = u ∧

r1 = r̃1) ∨ ua(u1, r1). If it is not the case that r̃ � r̃1
holds, then we can delete the first disjunct above. Fur-
thermore, the second disjunct can be rewritten as R(ua) ∧
∃ua, u.Cond(ua, u) and this makes the fix-point vacuously
true since the implication (R(ua) ∧ ∃ua, u.Cond(ua, u)) ⇒
R(ua) is a tautology.

Property 1. Let R(ua) be an ∃+-formula of the
form (3) and ti(ua, ua

′) is the form (4), whose update is
Upd·,·+ (ua, u, r̃). Then, if r̃ � r̃1∧· · ·∧ r̃ � r̃k is unsatisfiable
modulo TRBAC , then ∃ua′.(R(ua′) ∧ t(ua.ua′)) ⇒ R(ua) is
valid modulo TRBAC .

This tells us that we can simplify
W

i ∃ua
′.(R(ua′) ∧

ti(ua, ua
′)) by dropping those disjunct where the update

of ti (obtained by translating a can assign) does not con-
tain a role which is more senior of (at least) one role in R.
Checking the unsatisfiability of r̃ � r̃1 ∧ · · · ∧ r̃ � r̃k modulo
TRBAC can be done easily in practically relevant situations
(e.g., when the number of roles is bounded). Similar (dual)
observations can be made when we consider can revoke ac-
tions and negative occurrences of literals containing ua are
allowed in R.

5.2 Efficient elimination of redundancies
The application of Property 1 requires R (in
∃ua′.(R(ua′) ∧ T (ua, ua′))) to be an ∃+-formula. Although
this is without loss of generality, it may be computationally
very expensive since transforming formulae to disjunctive
normal form can lead to an exponential blow-up. Fortu-
nately, we can avoid this problem by making the following
two observations. First, formula (3) representing the goal is
already an ∃+-formulae. Second, we can refine the symbolic
backward reachability procedure by using an appropriate
data structure that stores the ∃+-formulae required to
apply Property 1 so as to avoid the frequent conversion into
disjunctive normal form. (By abusing notation, we regard
the formula T as a finite set of formulae of the forms (4)
and (5).)

Definition 1. A reachability tree associated to a tran-
sition system (ua, I, T ) and an existential formula G(ua)
of the form (3) is a labelled tree such that (I) the root
node is labelled by G, and (II) for each node ν in the
tree labelled by an ∃+-formula Rν , there exist children
ν1, ..., νk of ν labelled by ∃+-formulae Rν1 , ..., Rνk , respec-
tively, such that (II.a) Rνj is satisfiable (modulo TRBAC ),
(II.b) Rν1 ∨· · ·∨Rνk is logically equivalent (modulo TRBAC )
to ∃ua′.(R(ua′) ∧ t(ua, ua′)) where t is a formula in T , and
(II.c) t labels each edge from νj to ν, for j = 1, ..., k.

It is easy to show that the disjunction of the ∃+-formulae
labelling all the nodes in a reachability tree of depth n is
equivalent to Rn as defined in Section 3. Interleaving satis-
fiability checking modulo TRBAC (item (II.a) of Definition 1)
and the application of Property 1 allow us to eliminate re-
dundancies and to create only those nodes labelled by sat-
isfiable (modulo TRBAC ) ∃+-formulae. Since each edge in
the reachability tree is labelled by a transition in T (item
(II.c) of Definition 1), it is trivial to compute the sequence
of transitions leading the system from an initial state to a
goal state by collecting the labels of the edges in the path
from the node ν labelled by the ∃+-formula Rν such that
Rν ∧ I is satisfiable modulo TRBAC to the root node.

While the reachability tree provides the right data struc-
ture to eliminate redundancies and to perform the check for
intersection with the initial states, it seems that the fix-point
checks become more difficult to implement. Fortunately, this
is not the case as the following observations show. Consider
a node ν in the reachability tree associated to a transition
system (ua, I, T ) and an ∃+-formula G of the form (3). If
each children ν′ of ν is labelled by an ∃+-formula Rν′ such
that Rν′ ⇒ Rν is valid modulo TRBAC , then we say that
Rν is a local fix-point and stop adding children to its chil-
dren. When each ∃+-formula labelling a node in the fringe
of a reachability tree is a local fix-point, then we say that
a global fix-point has been reached and stop expanding the
reachability tree: this is equivalent to detecting a fix-point
as defined in Section 3.

5.3 A refinement of backward reachability
To design a practical version of the symbolic reachability

procedure using the notion of reachability tree, we observe
that such a data structure does not need to be constructed
explicitly. Instead, we can visit the tree on-the-fly by sim-
ply maintaining two sets of ∃+-formulae labelling the nodes
of the reachability tree: those ‘to be visited’ (TBV ) and
those ‘already visited’ (AV ), while performing the various
satisfiability checks. The pseudo-code of the procedure is in
Figure 3. The function SMC takes as input a transition sys-
tem (ua, I, T )—where I and T are obtained as described in
Section 4.2—and an ∃+-formula G of the form (3). Initially,
SMC initializes the set TBV to the singleton set containing
G and AV to the empty set. The goal G is decorated with
the empty sequence ε of formulae representing transitions.
In general, each ∃+-formula ν is decorated by the sequence
σ of transitions from T (in symbols, νσ) that (backward)
applied to ϕ yields a formula which is satisfiable when con-
joined with G or, equivalently, σ is the sequence of transi-
tions that leads the system from a state in ν to a state in G.
(When the sequence σ is unimportant, we write ν∗.) The
main loop of the procedure (lines 3–16) is entered if the set
of formulae to be visited is non-empty. At each iteration, the
following steps are taken. A formula from TBV is selected



1 function SMC (I, T,G)
2 TBV ←− {Gε}; AV ←− ∅;
3 while TBV 6= ∅ do
4 ρσ ←− select(TBV ); TBV ←− TBV \ {ρσ};
5 if check(ρ, {¬ν | ν∗ ∈ AV }) = unsat
6 then AV ←− {ρσ} ∪AV ;
7 for each t ∈ T do
8 if compatible(t, ρ) then P ←− Pre(t, ρσ) else P ←− ∅;
9 for each πt,σ ∈ P do
10 if subsume(π, {ν|ν∗ ∈ AV ) then P ←− P \ {πt,σ};
11 else if check(π, {I}) = sat
12 then return ‘‘goal reached via t , σ’’
13 end
14 TBV ←− P ∪ TBV ;
15 end
16 end
17 return ‘‘goal unreachable’’

Figure 3: Backward reachability as the on-the-fly
visit of a reachability tree

(line 4) according to the following observation: the higher
the number of occurrences of literals with ua (for goals, this
is equivalent to their size), the higher is the number of ∃+-
formulae whose disjunction is equivalent to the pre-image
of the formula with respect to a formula in T . So, select
picks the ∃+-formula ρ with the lowest number of occur-
rences of ua among those in TBV . (For similar reasons, the
set T is kept ordered by increasing number of occurrences of
ua in the pre-conditions of the formulae representing tran-
sitions.) At line 5, we check if the selected formula ρ is a
local fix-point. To this end, we need to check the validity
(modulo TRBAC ) of ρ ⇒

W
ν∈AV ν. By refutation, this is

equivalent to checking the unsatisfiability (modulo TRBAC )
of ρ∧

W
ν∈AV ¬ν. This is done by the invocation of the func-

tion check at line 5. The function performs the satisfiability
check incrementally by considering the formulae in AV in
reverse chronological order because we have seen that for-
mulae recently added to AV are more likely to contribute to
unsatisfiability. If unsatisfiability is detected, we insert the
formula ρ into AV as it is a local fix-point (line 6); other-
wise, the transitions in T must be applied to ρ (lines 7–15).
The function compatible (line 8) implements the test of re-
dundancy of Property 1. When the test is successful, we
consider another transition in T if any (this is done by set-
ting P to the empty set so that the inner loop, lines 9–13,
is never executed). Otherwise, we apply t to ρσ by invok-
ing the function Pre (line 8) which implements the symbolic
manipulations to derive a set (intended disjunctively) of log-
ically equivalent ∃+-formulae (according to Fact 1). These
formulae are stored in the set P , each one decorated with the
sequence of transitions t, σ (i.e. the last transition applied
to π is added to the front of the sequence of transitions that
allowed for the derivation of ρ from G). The content of P is
filtered (lines 9–13) so as to eliminate redundant formulae:
by invoking the function subsume, it is first checked that
π ∈ P is satisfiable (modulo TRBAC ) and then that π does
not imply a formula in AV (i.e. we check the validity mod-
ulo TRBAC of ρ⇒ ν for ν∗ ∈ AV ).2 If this is the case, then

2Indeed, this test can be seen as a dramatically simplified
version of the local fix-point check at line 5. The observation

π is a local fix-point and can be deleted from P ; otherwise,
it is checked if π ∧ I is satisfiable and if so, SMC returns
by reporting that the goal G is reachable by the sequence
of transitions labelling π (line 12). After P is filtered out,
its content is added to TBV (line 14) and the main loop of
the procedure is restarted. If there are no more formulae
in TBV and the test of the conditional at line 12 has never
been true, then SMC returns by saying that the goal G is
unreachable since a global fix-point has been detected.
Using ATPs and SMT solvers. There are several ways to
implement the function check for incremental satisfiability
checking. On the one hand, SMT solvers natively support
(stack-wise) incrementality but only approximate satisfia-
bility checks for BSR by using instantiation based meth-
ods (unfortunately, the complete SMT procedure described
in [19] has not yet been integrated in the available version
of the Z3 SMT solver [1]). On the other hand, ATPs are
refutation complete and performs very well on formulae be-
longing to the BSR class, e.g., SPASS [13] or the iProver [2],
but do not support incremental satisfiability checks. To find
the right trade-off between efficiency and completeness, we
decided to use a hierarchic combination of SMT solvers and
ATPs. First, we invoke the Z3 SMT solver: if Z3 returns
‘unknown,’ we invoke either SPASS or the iProver among
the several available ATPs. Since we use the new SMT-LIB
standard [5] to communicate with Z3 and the TPTP for-
mat [3] to invoke the ATPs, other SMT solvers and provers
can be readily plugged in our tool as new advances in both
fields become available.

5.4 Sub-goaling
As pointed out in [24], the size of the goal (see the defi-

nition at the end of Section 2) is critical for the complexity
of the user-role reachability problem. Experiments with a
preliminary version of our tool confirmed this result: it did
not scale up even to modest values of this parameter. In or-
der to circumvent the problem, we incorporated a divide et
impera strategy. The idea is to generate a user-goal reach-
ability problem for each role in Rg, say that the size of the
goal is k. If the procedure SMC returns with “goal unreach-
able” on (at least) one of the k problems, we are entitled to
conclude that the more general problem is also unsolvable.
Otherwise, if SMC returned with “goal reachable via σj” for
each j = 1, ..., k, then we create a new problem with the
original goal but with only the transitions in T ′ =

Sk
j=1 σj

(by abuse of notation, we consider sequences as sets here)
and we run again the procedure SMC . The last call to the
procedure is done for checking if the transitions in T ′ are
sufficient to solve the reachability problem. In practice, we
have observed that the cardinality of the set T ′ obtained
in this way is much smaller than that of the original set T
of transitions, and this permits substantial savings in the
execution time. If the last call to SMC is not successful
(because some transitions interfere in unexpected ways), we
can iterate again the process by selecting some other solu-
tions (if any) to one or more of the k sub-problems and try
to solve again the original problem.

5.5 Experiments
We briefly discuss our experiments with a prototype of the

techniques described above that we call ASASP for Automatic

here is that we want to perform a computationally cheap test
to reduce the number of formulae to be inserted in TBV .



 0.01

 0.1

 1

 10

 100

 1000

 1  2  3  4  5  6  7  8

Ti
m

e 
(s

ec
)

Goal size

ASASP
Stoller

Figure 4: Timings on benchmark class three of [24]

Symbolic Analysis of Security Policies. We consider three
classes of problems: (a) the synthetic benchmarks described
in [24] and available on the web at [4] for the ARBAC model
without hierarchy, (b) the same problems considered in (a)
augmented with randomly generated role hierarchies, and
(c) a new set of synthetic benchmarks—derived from (b)—
for the administration of a simple instance of the attribute
RBAC policies introduced in this paper. All the experiments
were conducted on an Intel(R) Core(TM)2 Duo CPU T5870,
2 GHz, 3 GB RAM, running Linux Debian 2.6.32. The set of
benchmarks, the executable of ASASP, and the experimental
results are available at http://st.fbk.eu/SilvioRanise.
(a) ARBAC without role hierarchy. In [4], there are
five classes of randomly generated benchmarks for ARBAC
policies without role hierarchy (for a detailed description,
the reader is pointed to [24, 4]). The first and second classes
of benchmarks were used to evaluate a forward search al-
gorithm described in [24] and are too easy for backward
procedures which immediately realize that the goal is never
reachable as the goal role is different from all the target
roles of the administrative actions. The fourth and fifth
classes of benchmarks are also easily solved by both ASASP

and Stoller, with the former slightly slower than the latter
because of the overhead of invoking SMT solvers or ATPs
instead of the ad hoc techniques used in [24]. The most in-
teresting class of problems is the third, which was used to
evaluate the scalability of the backward reachability algo-
rithm of [24] with respect to increasing values of the goal
size, along the lines of the parametrised complexity result
in [24]. Figure 4 shows the plot of the median time (loga-
rithmic scale) to solve 32 problems of ASASP and Stoller

for increasing values of the goal size (up to 8); the time out
was set to 1, 800 sec. It is clear that the behavior of Stoller
grows quickly as the function of the size of the goal. For goal
size larger than 6, we were no more able to report the me-
dian value as Stoller solved less than 50% of the instance
problems in the given time-out. Up to goal size 4, Stoller
was able to solve 100% of the problem instances, for a value
of 5 the percentage of success goes down to around 73%,
for 6 goes further down to 60%, and for 7 and 8 reduces to
37% and 33%, respectively. Instead, ASASP shows a much
better behavior, solving the problem instances for goal sizes
1, 2, and 3 with a slight overhead with respect to Stoller

and outperforms the latter for goal sizes bigger than 3; in

particular, ASASP can solve 100% of the problem instances
up to a goal size of 7 and 90% for a goal size of 8. Notice the
“cut-off effect” for goal size larger than 5 when problem in-
stances become over-constrained (as it is unlikely that more
and more goal roles are reachable). The key to obtain this
nice asymptotic behavior was the sub-goaling technique de-
scribed in Section 5.4.
(b) ARBAC with role hierarchy. We extend the bench-
mark problems considered above with randomly generated
hierarchies parametrised with respect to the shape (lattice,
inverted tree, or layered [17]) and the maximal length of the
transitivity chains (called the depth of the hierarchy). In
order to enable Stoller to process the resulting problem in-
stances, we pre-processed the problem by implementing the
translation in [21] to compile away the hierarchy, taking into
account the explicit negation assumption of Section 4.2 to
make the results of the analysis compatible with those of
our tool. For ASASP, we considered the instance problems
with the hierarchy axiomatized as a partial order (recall
Section 4.2) and those with the hierarchy compiled away.
It turns out that only the depth of the hierarchy is signif-
icant while the performances of the tools are insensitive to
the shape. Each plot in Figure 5(a) shows the median time
(logarithmic scale) of Stoller and of ASASP (both with ax-
iomatization and compilation of the role hierarchy) against
ten increasing values of the depth of the role hierarchy for a
fixed value of the goal size (the time-out was set to 600 sec).
Similarly to the results in Figure 4, ASASP scales much better
than Stoller with respect to the size of the goal: for increas-
ing values of the depth of the role hierarchy, this behavior is
amplified. For ASASP, using a symbolic representation of the
role hierarchy is beneficial when compared with the perfor-
mances on the same problem instances with the hierarchy
compiled away. The reason is that the technique to compile
away the hierarchy may give exponentially larger problems
(as observed in [21]) that are more difficult to solve. To con-
firm this, we remark that while ASASP can solve all problem
instances in the given time-out, the percentage of success of
Stoller degrades with increasing depth: from 90% at depth
2 down to 66% at depth 30.
(c) Adding attributes. We furtherly extend the bench-
mark problems considered above by adding an attribute for
each user, which may be seen as a quantitative measure of
his skills to perform administrative actions. The attribute
values are natural numbers which are compared by the usual
total order relation>; this can be easily axiomatized by BSR
formulae. To generate new benchmark sets, we have created
a program taking as input a set of ARBAC problems in the
format of [4] and some other parameters to randomly add to
the pre-conditions of the actions suitable constraints about
the value of the attribute of the administrator. For each ad-
ministrative action in the benchmark problems of the third
class of [4], with a probability of 0.75, we add the constraint
that the value of the attribute should be > than a threshold
value, again randomly selected (with a uniform distribution)
among 5 distinct values. For these problems, we also con-
sidered the ten hierarchies of roles that we have generated
for the previous set of benchmarks. Each plot in Figure 5(b)
shows the median time (logarithmic scale) of ASASP (both
with axiomatization and compilation of the role hierarchy)
against 10 increasing values of the depth of the role hierar-
chy for a fixed value of the goal size (the time-out was 600
sec). Stoller cannot handle this type of problems at all.



Surprisingly (with respect to what we have observed for the
previous set of benchmarks), compiling away the role hier-
archy pays off. This is probably due to the fact that the
automatic modes of the provers are not “smart” enough to
handle the problems generated by our tool.

6. RELATED WORK AND DISCUSSION
Logic Programming (LP) has been extensively used to

provide a basis for the security analysis of access control
and trust management policies (see, e.g., [18]). The main
drawback of using LP is the limited support for negation
in the applicability conditions of (administrative) actions.
Our technique supports a form of negation (see Section 4.3)
which, when combined with the technique in [21] to com-
pile away the role hierarchy (in case, the number of roles is
bounded), allows us to generalize the decidability results for
security analysis problems obtained in [18].

Planning techniques have also been adapted to design au-
tomated analysis for security of access control policies [21,
24, 23]. They support negation although, for efficiency, only
one negative literal is allowed in the pre-conditions of ad-
ministrative actions. Besides the theoretical results, [24]
presents an extensive experimental evaluation of security
analysis techniques on a set of synthetic benchmarks that we
found very useful for developing our tool and the (compar-
ative) experimental evaluation in Section 5.5, which clearly
demonstrates the scalability of the automated analysis tech-
nique proposed in this paper. We have contributed two new
classes of benchmarks as we believe that the availability of
a library of problems will help the development and com-
parison of new techniques for the security analysis of RBAC
policies.

Model checking techniques have also been used by secu-
rity analysts; see, e.g., [15, 22, 25, 14]. Except [15] (which
uses push-down systems for verifying various properties of
the SPKI/SDSI policy language), these techniques leverage
symbolic finite state model checking and thus must adopt
abstraction techniques to finitely approximate the infinite
state space of RBAC policies. In contrast, our approach
supports the symbolic specification of infinite state spaces
by using fragments of first-order logic along the lines of [11].
Unfortunately, we cannot use the system [12] implementing
the approah as this only supports at most two existentially
quantified formulae to describe transitionsand the adminis-
trative actions considered in this paper require more than
two existential variables. Another difference is that our tool
uses automated theorem proving techniques for BSR formu-
lae while [12] has ad hoc techniques to handle quantifiers in
richer theories associated to the transition systems. A more
extensive account of the techniques presented in this paper
can be found in [6].
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Figure 5: Performances for increasing depth of the role hierarchy and fixed goal sizes


