
Automated VAlidatioN of Trust and Security
of Service-oriented ARchitectures

FP7-ICT-2007-1, Project No. 216471

www.avantssar.eu

Deliverable D6.2.1
State-of-the-Art on Specification
Languages for Service-Oriented

Architectures

Abstract
This deliverable provides an overview of state-of-the-art specification lan-
guages for Service-Oriented Architectures (SOA) and their implementation
via Web Services. This knowledge is helpful for defining both AVANTSSAR
languages: ASLan, the formal language, and ISSL, the Industrially-Suited
Specification Language, devoted to specifying trust and security properties of
services, their policies and their composition. The deliverable is conceptually
organized according to the W3C service protocol stack so as to emphasize
the different service architecture layers. For each of them, we describe their
corresponding languages and evaluate whether their properties could be of
interest in the scope of AVANTSSAR.

Deliverable details
Deliverable version: v1.1 Person-months required: 6
Date of delivery: 30.06.2008 Due on: 30.06.2008
Classification: public Total pages: 67
Editors: all

Project details
Start date: January 01, 2008 Duration: 36 months
Project Coordinator: Luca Viganò
Partners: UNIVR, ETH Zurich, INRIA, UPS-IRIT, UGDIST, IBM,

OpenTrust, IEAT, SAP, SIEMENS

http://www.avantssar.eu
www.avantssar.eu
http://www.avantssar.eu

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 2/67

Contents
1 Introduction 5

2 History and context of Services 7
2.1 History of Services and Remote Procedure Calls (RPC, DCOM,

CORBA) . 7
2.2 Basic terms and concepts . 8
2.3 Document Structure . 9

3 Transport and Messaging Layer 11
3.1 TCP, UDP / HTTP, SMTP 11
3.2 REST (Representational State Transfer) 12
3.3 XML-RPC . 12
3.4 SOAP (Simple Object Access Protocol) 12

4 Web Service Description Language (WSDL) 14

5 Reliable Messaging and Security Layer 16
5.1 WS-Security . 17
5.2 WS-Trust . 18
5.3 WS-SecureConversation . 19
5.4 WS-Policy . 19
5.5 WS-SecurityPolicy . 20
5.6 XACML . 22
5.7 WS-Federation . 25
5.8 SAML . 27
5.9 WS-Reliability . 28
5.10 WS-ReliableMessaging . 28
5.11 WS-MetadataExchange . 29

6 Context, Coordination and Transaction-related Protocols 29
6.1 WS-Coordination . 30
6.2 WS-AtomicTransaction . 30
6.3 WS-BusinessActivity . 31
6.4 Evaluation . 31

7 Registry (publishing /discovery) 31
7.1 UDDI (Universal Description Discovery and Integration) . . . 32
7.2 WS-Discovery . 33

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 3/67

8 Business Process Language Layer 34
8.1 WSFL (Web Services Flow Language) 36
8.2 WS-BPEL, WS-HumanTask and BPEL4People 39
8.3 BPMN (Business Process Modeling Notation) 44
8.4 BPDM (Business Process Definition Metamodel) 47
8.5 WPDL (Workflow Process Definition Language), XPDL (XML

Process Definition Language) 50
8.6 PSL (Process Specification Language) 52
8.7 YAWL (Yet Another Workflow Language) 55

9 Choreography Layer 58
9.1 WSCI (Web Services Choreography Interface) 58
9.2 WS-CDL (Web Services Choreography Description Language) 60
9.3 Evaluation . 61

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 4/67

List of Figures
1 Web Service Protocol Stack 10
2 Web Service Security Stack 16

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 5/67

1 Introduction
This deliverable provides an overview of established specification languages
for Service-Oriented Architectures (SOA) and their implementation via Web
Services.

The AVANTSSAR workpackage 6 is concerned with dissemination and
industry migration. One of its aims is the migration of AVANTSSAR re-
search results to industrial development environments (e.g., Eclipse, Net-
Beans). This survey will help us to acquire some knowledge on the state-of-
the art of standard languages that could be of interest for the specification
of the AVANTSSAR languages: ASLan (the formal language) and ISSL (the
industrially-suited language), in the sense that both languages will probably
consist of extensions to standard languages.

ASLan will be a formal language for specifying services, their trust and se-
curity properties, their associated policies, and their composition into service
architectures.

ISSL, the industrially-suited specification language, on top of the formal
language (ASLan), will provide means to specify business processes and their
interaction. It should describe the coordination necessary to achieve a given
goal, including notions to describe both the logic and the stateful information
needed for such a coordination.

The SOA properties, such as loose coupling, interoperability, reusability,
etc., provide a good computer system architectural style for creating and us-
ing business processes, packaged as services, throughout their lifecycle. As a
starting point of the survey, we begin with a short history of services, to em-
phasize the main characteristics of service orientation: their heterogeneous,
distributed, and dynamic nature. Then we propose some basic definitions
and concepts of the service architecture, as the design of the AVANTSSAR
languages needs to take into account the existing languages for service de-
scription and their orchestration.

We structure our document relying on the W3C service protocol stack,
so as to distinguish the different service architecture layers. We present the
corresponding languages and evaluate whether they could be of some interest
for AVANTSSAR.

Because the term “service” has many different meanings and is so widely
used in different areas of computer science, it is important to describe what
“service” means in the context of the AVANTSSAR project. We start from
the very general and easy-to-read definition and then proceed towards the
more specialized one, as proposed by the normalization consortium.

The Merriam-Webster online dictionary contains 46 entries for the term
“service” and emphasizes its relation to the words “slave” or “servant”. In its

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 6/67

predominant meaning, “service” thus describes “the occupation or function
of serving.” This definition fits well within the computer science area, as the
main purpose of machines and computers is to help and serve humans and
society. This could be a reason why the term “service” is so widely used
within computer science.

The Organization for the Advancement of Structured Information Stan-
dards (OASIS) defines a service as “a mechanism to enable access to one or
more capabilities, where the access is provided using a prescribed interface
and is exercised consistent with constraints and policies as specified by the
service description” [15].

Nowadays, SOA is typically implemented by Web Services, such that ser-
vices are made accessible via Web interfaces using XML. The World Wide
Web Consortium (W3C) [21] defines a Web Service as “a software system
designed to support interoperable machine-to-machine interaction over a net-
work. It has an interface described in a machine-processable format. Other
systems interact with the Web Service in a manner prescribed by its descrip-
tion using SOAP messages” [23].

It has to be noted that a service-oriented architecture is not tied to a spe-
cific technology. It may be implemented using a wide range of technologies,
including SOAP, RPC, DCOM or Web Services. A SOA can be implemented
using one or more of these protocols. It might, for example, leverage file sys-
tem mechanisms to communicate data using a defined interface specification
between processes conforming to the SOA concept. The key is independent
services with defined interfaces that can be called to perform their tasks in
a standard way, without the service having foreknowledge of the calling ap-
plication, and without the application having or needing knowledge of how
the service actually performs its tasks.

Service-oriented applications are heterogeneous: the various individual
components may be built using different technologies and run in different
environments. Nevertheless, both the components and their requirements
may interact, and in some cases even interfere with each other. Still, most
currently existing security solutions are limited to protecting applications
within a single security context.

An important point to mention for the AVANTSSAR project is that
service-oriented architectures are distributed systems, i.e., the functionalities
and resources are distributed over several machines or processes communicat-
ing via messages. The message passing nature of interactions of Web Services
and of other security-sensitive services increases their vulnerability: even as-
suming that the cryptographic primitives work correctly (that is, the system
cannot be attacked exploiting weaknesses of cryptographic keys or of encryp-
tion/decryption algorithms), it allows for attacks based on interception, mod-

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 7/67

ification, and replay of messages. However, future service-oriented software
architectures need to consider security among multiple/heterogeneous secu-
rity contexts: for instance, between a requester and a service there might be
multiple intermediaries that must be able to read or even modify the contents
of a message, or the same service might be used in different environments
(e.g. mobile vs. stationary). Thus, a notion of static end-to-end security is
not applicable here, as in the case of simpler IP-communications.

When considering two of the main characteristics of service orientation,
their heterogeneous and distributed nature, the complexity of reasoning about
trust and security aspects of services and service-oriented architectures be-
comes evident.

The AVANTSSAR technology will provide the ability to formally model
and automatically reason about (Web) services, their composition, their re-
quired security properties and associated policies, both at network and ap-
plication level.

2 History and context of Services

2.1 History of Services and Remote Procedure Calls
(RPC, DCOM, CORBA)

Looking back at the history of software engineering, the ideas of service-
oriented programming and service-oriented architectures (SOA) rely on dis-
tributed computing technologies. The concept is to build upon object-orient-
ed and component-based programming by strongly decoupling application
components from each other. The term “Remote Procedure Call” (RPC)
goes back to at least 1976, when it was described in [65].

RPC is an obvious paradigm for implementing a client-server model of
distributed computing. In the object-oriented context, RPC may also be
referred to as “Remote Method Invocation” (RMI).

An RPC is initiated by the client sending a request message to a known
remote server in order to execute a specified procedure using input param-
eters. The client typically suspends itself waiting for a response, and then
continues along with its process (synchronous mode). There are many im-
plementations, resulting in a variety of different (and usually incompatible)
RPC protocols.

The first service-oriented architecture emerged with the use of DCOM [27]
and Object Request Brokers (ORBs) based on the CORBA [26] specification.
DCOM is the acronym for the Distributed Component Object Model, an
extension of the Component Object Model (COM). It was introduced in

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 8/67

1996 and is designed to be used across multiple network transports, including
Internet protocols such as HTTP. It runs on Microsoft platform.

CORBA is the acronym for Common Object Request Broker Architec-
ture. It was developed by the Object Management Group (OMG), an inter-
national, open membership, non-profit computer industry consortium [48].
The Object Request Broker (ORB) is a middleware that uses the CORBA
specification. The ORB handles all of the details involved in routing a re-
quest from client to object, and getting the response back. A CORBA-based
program is language and platform-neutral.

These protocols are the pillars of distributed computing technologies.
They can be seen as the ancestors of current Service Oriented Architecture
protocols, like SOAP [23].

2.2 Basic terms and concepts
We will continue exploring the main features of service orientation. The main
goal of the service-oriented architecture paradigm is reducing development
costs by strong re-usability of software components. To this end, services are
encapsulated and loosely coupled. The client–service relationship is eased
by giving service providers means to advertise their business functionalities.
It obviously also has to give clients means to search for service providers
matching their business needs. The basic concepts of the SOA paradigm
features three main actors:

• a service provider that offers access to some business functionalities,

• a client that access some business functionalities and

• the service registry that makes the glue between clients and service
providers. Service providers can register their business functionalities
while clients can browse the registry listings.

The service architecture relies on message exchange between these main
actors.

As mentioned in the AVANTSSAR proposal, to meet frequently chang-
ing requirements and business needs, (e.g., in a federation of enterprises),
components are replaced by services that are distributed over the network
(e.g. the Internet), composed statically or at run-time in a demand-driven
and flexible way.

Atomic services provide functionalities for the business logic. They can
also provide the basic building blocks of security functionalities. The descrip-
tion language for atomic services must allow one to express the mechanisms

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 9/67

used for service identification, service invocation, and message transmission,
including the formats used. Web Services and their description languages
offer a good starting point.

Each service may rely on the existence and availability of other (possibly,
dynamically retrieved) services to perform its computation; moreover, this
includes dynamic adaptation and explicit combination of applicable policies,
which determine the actions executed and the messages exchanged. For
example, a service granting the access to a resource of a business partner
may use a local authentication service, trusted by both partners, to assess
the identity of a client and rely on authorization services on both ends that
combine their policies to decide whether to grant the access or not.

AVANTSSAR languages need to provide appropriate language elements,
such as channels, principals, identities (referring to subjects and resources),
obligations and trust. They have to be accompanied with means to specify
the composition, in terms of service orchestration, choreography, invocation,
message passing, etc.

We have started our investigations by examining existing service descrip-
tion languages, the features they offer, and their limitations for expressing
interaction and composition in the security domain. As Web Services can
be used to implement a service-oriented architecture, the study of some Web
Service protocol stacks was useful to distinguish the different service architec-
ture layers for the purpose of new language definitions. The AVANTSSAR
languages have to be sufficiently expressive to interact with most of these
service layers.

2.3 Document Structure
Based on the W3C Web Service architecture targeted for integrating interact-
ing applications [25], Figure 1 [33] gives an example of a service architecture
stack.

Let us first give an overview of the different layers that could be of interest
within the AVANTSSAR scope:

• Transport and Messaging Layer: describes the various transport
protocols that can be utilized by Web Services.

• Web Services Description Language (WSDL): describes the static
interface of a Web Service. It defines the message set and characteris-
tics of end points.

• Reliable Messaging and Security layer: guarantees the delivery
of information exchanged between participants and provides security

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 10/67

Figure 1: Web Service Protocol Stack

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 11/67

functionalities to cope with the security needs of the participants.

• Context, Coordination and Transaction Layer: interoperable
protocols that support distributed transactions across platform bound-
aries.

• Registry (UDDI): enables the publishing of a Web Service, as well
as its discovery from service requesters using sophisticated searching
mechanisms.

• Business Process Language layer (Orchestration): describes the
execution logic of service-based applications by defining their control
flows and prescribing the rules for consistently managing their data.

• Choreography Language layer: describes collaborations of partic-
ipants by defining from a global viewpoint their common and com-
plementary observable behavior, where information exchange occurs,
when the jointly agreed ordering rules are satisfied.

In the following sections, we will focus on these different language layers
to evaluate them and decide whether their properties should be taken into
account for the AVANTSSAR language specifications.

3 Transport and Messaging Layer
Transport and messaging layers are the foundation layers of the service-
oriented architecture. For our ASLan/ISSL language specifications, we need
to consider the message exchange behavior among participating Web Ser-
vices.

3.1 TCP, UDP / HTTP, SMTP
Transport protocols are required to facilitate message delivery. The Trans-
mission Control Protocol (TCP) and the User Datagram Protocol (UDP)
belong to the core protocol stack of the Internet. TCP, as a session-based,
reliable and in-order delivery transport protocol, is suitable for applications
like file transfer, e-mail, exchanges between Web servers and clients. UDP
is a fast and efficient protocol that is stateless and unreliable; datagrams
(short messages) may arrive out of order, duplicated or missed without no-
tice. Unlike TCP, UDP is compatible with broadcasting (sending to all on
local network) and multicasting (sending to all subscribers).

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 12/67

The most common communication protocols are the Hypertext Trans-
fer Protocol (HTTP) (or its secured variant HTTPS) and the Simple Mail
Transfer Protocol (SMTP), thus by sending XML requests, and getting XML
responses over the transport protocol. HTTP is a request/response standard
between a client (an end-user) and a server (a Web site). HTTP is not
constrained to using TCP/IP and its supporting layers, it only presumes a
reliable transport. SMTP is a relatively, text-based protocol. It is the de
facto standard for e-mail transmissions across the Internet.

Evaluation

The AVANTSSAR languages should be able to handle the message delivery
over any transport and communication protocols. Besides these mechanisms,
we will now focus on the way a message is formatted and delivered, indepen-
dently from an operating system, programming language, or platform.

3.2 REST (Representational State Transfer)
The Representational State Transfer (REST) [32] is a network architecture
paradigm relying on standard transport protocols like HTTP, without the use
of an additional messaging layer. A service call is handled via its URI. HTTP
provides the standard operations (Get, Post, Put, Delete) as procedure calls.

Security is handled as for a standard Web application (using SSL, ses-
sions, cookies, etc). REST is a client-server, stateless, cacheable and layered
network paradigm. The World Wide Web is the key example of a REST
design.

3.3 XML-RPC
XML-RPC [66] is a Remote Procedure Call protocol that uses XML to encode
the messages and HTTP to handle them.

A network node (the client) sends a request message to another node (the
server), which sends a response message to the client.

XML-RPC is a precursor to SOAP. It is sometimes preferred to SOAP
because of its simplicity, minimalism, and ease of use.

3.4 SOAP (Simple Object Access Protocol)
The Simple Object Access Protocol (SOAP) [23] defines a Remote Proce-
dure Call using an XML messaging protocol for basic service interoperability.
SOAP once stood for ’Simple Object Access Protocol’, but this acronym was

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 13/67

dropped with the version 1.2 of the standard, as it is not simple anymore
and it is not only used to access objects. It is a messaging framework for
transferring information between an initial SOAP sender, optionally some
intermediate receivers and an ultimate SOAP receiver.

This protocol is non-proprietary (it became a W3C Recommendation in
2003) and platform and language independent. It can be run over a simple
transport protocol (e.g., HTTP or SMTP). There are examples of the usage
of SOAP services over the transport protocols in [57]. For instance, one can
also explore sending and receiving service-oriented requests over the Simple
Mail Transfer Protocol (SMTP). In fact the nature of the service-oriented
architecture enables one to expose services over any protocol, even beyond
those described in official bindings such as TCP, named pipes, UDP and
custom transport protocols.

A SOAP message is an XML document containing the following elements:

• A required Envelope element identifying the XML document as a SOAP
message.

• An optional Header element containing header information.

• A required Body element containing call and/or response information.

• An optional Fault element providing information about errors that oc-
curred while processing the message.

The required SOAP Envelope element is the root element of a SOAP
message. It defines the XML document as a SOAP message.

The optional SOAP Header element contains application specific infor-
mation (like authentication, payment, etc) about the SOAP message. As
we will see in 5 there are several standardized SOAP-Header extensions like
WS-Reliability, WS-Security, etc. The SOAP actor attribute may be used
to address the Header element to a particular endpoint, as a SOAP message
may travel from a sender to a receiver by passing different intermediaries
along the message path.

The required SOAP Body element contains the SOAP message intended
for the endpoint of the message.

Evaluation
SOAP, XML-RPC and REST are commonly used in the service-oriented
architecture scope. They should be taken into account for our ASLan/ISSL
specifications, as the use of different communication protocols could lead

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 14/67

to compatibility and security problems. To ensure integrity and privacy of
messages during the transfer, some security and trust requirements need to
be fulfilled. This could be achieved at the transport level or in the message
itself.

By examining the protocols mentioned in this section, we have seen that
Web Services communications can be supported by various transport proto-
cols. After the definition of the transport and messaging layer, we will now
focus on the service description that guides the interaction between computer
systems.

4 Web Service Description Language (WSDL)
The Web Service Description Language (WSDL) [22] is responsible for de-
scribing Web Services, especially the interface a Web Service exposes to other
applications. Means for expressing service interfaces are at the core of all ser-
vice models, and WSDL provides very flexible, highly-extensible, and well-
designed methods for doing this. As most other Web Service standards,
WSDL is based on XML. WSDL documents contain all information required
for the use of a Web Service, including data types, message patterns, method
descriptions, and service location. As a consequence, programming frame-
works that are based on Web Services - such as Windows Communication
Foundation (WCF) [12] - provide tools that consume a WSDL document and
dynamically create the proxy code necessary for the use of a Web Service.
In WSDL, Web Services are expressed as collections of endpoints that ex-
change messages. WSDL also contains information of how these messages
are mapped to a concrete network protocol - a so-called binding - so that
these messages can be exchanged in an interoperable fashion.

In brief, WSDL includes the definition of the following parameters:

• Data structures: data types required to interact with a Web Service
are specified using XML Schema Definition (XSD) [62]. XSD is a W3C
recommendation for describing the structure and content of an XML
document.

• Operations: operations offered by a Web Service are specified in terms
of input and output data.

• Service endpoint reference: URI of a Web Service, i.e., its location on
the Internet.

The data types used in the messages of a service are described using XSD
that supports a highly-flexible type system. The WSDL specification specifi-

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 15/67

cally mentions that XSD can be replaced with a different type system. XML
and XSD are the pillars of SOAP, WSDL and WS-* document messaging
requirements.

The specified types are used in WSDL messages, which are combined to
a Web Service operation.

A Web Service operation consists of a list of messages, defining the op-
eration’s input and output messages. Similarly, a set of operations together
with a binding and a network address, specified by a URI, comprises an end-
point (or a so-called port). A Web Service is then a collection of such related
endpoints.

Evaluation
The AVANTSSAR language specifications should rely on WSDL because it
introduces a common grammar for describing services.

We regard constraints and policies as part of a service’s description. Con-
straints can specify, for instance, the amount of resources a service is allowed
to consume in a certain time period; policies typically address security and
privacy issues. We try to capture constraints and policies as extra-functional
aspect of service descriptions.

It was already remarked above that WSDL is a core language tailored
to describe Web Services based on an abstract model of what the service
offers. Its standardization is being conducted by the Web Services Descrip-
tion Working Group [24]. When describing how to access a service, it is also
important to publish the policies that determine which security mechanisms
the requester must apply. This is an open issue today. In the recent WSDL-
2.0 (January 2006) the issue is left out of scope, the only syntactical means
is to use “secure-channel features”, which are simply internationalized URLs
(IRIs), without any semantics attached to them.

Within AVANTSSAR, we will focus our attention on the policies attached
to atomic services as well as on other composed services. We will see that
other Web Service standards such as WS-MetadataExchange or WS-Policy,
for instance, could be used to express and exchange extra-functional infor-
mation associated with a service.

In the following, we discuss some of these WS-* specifications that we
envision to be important in the scope of the AVANTSSAR project. Their
purpose is to facilitate common message requirements between different sys-
tems. At a certain point in time, it became mandatory to establish some
kind of standardization when, for instance, one could send username and
password credentials within some custom SOAP headers.

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 16/67

The WS-* specifications support and integrate various security models,
mechanisms, and technologies in a way that enables a variety of systems
to securely interoperate in a platform and language-neutral manner. Each
specification addresses specific parts of the security framework. The specifi-
cations are flexible and extensible. The architecture essentially supports the
secure exchange of SOAP messages, as described in the following.

5 Reliable Messaging and Security Layer

Figure 2: Web Service Security Stack

Given the security issues associated with open networked environments,
it is just impossible to deploy business Web Services without a reliable and
robust framework for secure end-to-end communication Web Service appli-
cations.

Consequently, several WS-* security related specifications have been stan-
dardized by the OASIS Open Consortium. Their stack is illustrated in Fig-
ure 2.

By design, the specifications are flexible and extensible to support many
types of security information and models. However, different implementa-
tions need some guidelines to restrict the variety of options and choices in
order to inter-operate. A security profile is defined by the Web Services
Interoperability organization to meet this requirement.

Using the specifications does not guarantee absolute security of Web Ser-
vices. In fact, careless combination or unsuitable use of the security options
may lead to insecure systems.

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 17/67

5.1 WS-Security
WS-Security defines a SOAP Security Header format containing security-
related information. A SOAP message may include multiple security headers.
Each header is targeted at a specific SOAP actor/role that may be either the
ultimate recipient of the message or an intermediary. Security headers may
encapsulate one or many elements of the following types:

• Security tokens: they express claims that the service requester might
have regarding the message’s security. Such claims may concern iden-
tity, public key/subject binding, authorization etc... Currently, WS-
Security profiles define token formats that represent User Name, X.509
certificate, Kerberos ticket, SAML assertion and Rights Expression
Language licence.

• Signatures: they are built on top of XML Signature standard. They
protect SOAP messages from unauthorized modification. Signatures
are also used by message producer to demonstrate knowledge of a key.
Signatures may contain references to public keys defined in security
tokens (such as X.509 certificates). The specification allows multiple
signatures to be included in a security header. They may reference body
parts and headers of the SOAP message, including security tokens.
In fact, Security tokens might be signed to prevent forgery. This is
particularly useful for distributed applications where messages transit
through multiple processing intermediaries.

• Encryption elements: their format and processing model are based on
the XML encryption standard. Thus, they enable encryption of any
combination of headers and body SOAP blocks. The specification al-
lows encryption of data using a public key or an encrypted symmetric
key.

• Timestamps: they allow the recipient of SOAP message to determine
the freshness of the security header by providing means to express their
creation and expiration dates.

By providing a common syntax and a flexible processing model for se-
curity headers, this specification accommodates a large variety of security
models and encryption technologies. Moreover, incorporating security fea-
tures in the application level ensures end-to-end security.

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 18/67

Evaluation

WS-Security foundation provides the basis for expressing security properties
at message level. Thus, validating applicative security and trust requirements
will not be possible without equivalent mechanisms in the AVANTSSAR
languages. Moreover, the availability of these features in ASLan and ISSL is
essential for supporting the WS specifications discussed below.

5.2 WS-Trust
This specification provides a framework built on WS-Security for managing
security tokens. In the WS-Trust trust model, a requester examines the policy
associated with a Web Service to identify the claims it needs. If the policy
statements require security tokens that the requester does not possess, WS-
Trust specifies a way of obtaining them: contacting a Web Service referred
to as Security Token Server (STS). A STS may also be used to renew, cancel
and validate security tokens.

WS-Trust defines abstract formats of the messages used to manage secu-
rity tokens. To each usage pattern corresponds a specific binding providing
concrete semantics to the general security token requests and responses.

For complex scenarios, WS-Trust describes flexible mechanisms for trust
establishment. In fact, different STS may get involved to broker, exchange or
delegate security tokens issuance. A general model for negotiation/challenge
extensions is specified to support multi-messages exchanges for security to-
kens management.

The flexibility and extensibility of the specification allows interfacing with
a large number of security models, including legacy protocols. In fact, in-
creasing interoperability between trust domains is one of the purposes of this
standard.

Evaluation

WS-Trust provides essential mechanisms for trust establishment. For their
complexity and criticality, WS-Trust communication protocols require spe-
cial attention. In fact, they cannot be ignored by the AVANTSSAR project,
particularly when used in preparative phases for critical business transac-
tions. Supporting WS-Security should make AVANTSSAR languages ex-
pressive enough to allow the analysis of WS-Trust tokens.

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 19/67

5.3 WS-SecureConversation
When a Web Service provider and a requester engage in a long-running and
multiple-message communication, the use of the basic security model defined
by WS-Security becomes unsuitable. In fact, repetitive signature and en-
cryption of a large number of XML blocks is computationally expensive and
degrades the security of the keys. WS-SecureConversation reuses the concept
of session keys (defined by SSL/TLS) to enhance the model.

It works in conjunction with WS-Security, WS-Trust and WS-Policy to al-
low sharing of security contexts. A security context is represented by a Secu-
rity Context Token (STC) defined in WS-Security Header. It corresponds to
a shared secret used to sign or encrypt messages. It can be created by an STS,
an active communicating party, or after negotiation. WS-SecureConversation
reuses WS-Trust bindings to deal with STC issuance, amending, renewal and
canceling. An STC can either contain a shared secret or imply it. In fact, this
specification allows key derivation to have an even better protection against
key analysis.

Evaluation

In the context of AVANTSSAR project, one could focus on validating security
of the Context tokens and their management during a long running trans-
action. Modeling WS-SecureConversation scenarios should reuse features of
ASLan and ISSL for expressing WS-Security tokens.

5.4 WS-Policy
The WS-Policy is a policy expression language for describing the capabilities
and requirements of a Web Service, i.e. representing whether and how a mes-
sage must be secured, whether and how a message must be delivered reliably
or whether the request must follow a transaction flow. Such requirements
are translated into ’machine-readable’ policy expressions that are usually pro-
vided by the web service developer for the client component to automatically
apply the requirements.

Basically, WS-Policy is a simple language that defines four elements (Pol-
icy, All, ExactlyOne, PolicyReferences) and two attributes (Optional, Ignor-
able) that suffice to express generic policy expression by combining individual
assertions. The policy assertions syntax are outside the scope of WS-Policy
specifications. Thus, WS-Policy can be viewed as a meta policy compo-
sition language that can express any kind of requirements as long as the

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 20/67

policy-aware clients (Web Services endpoints and relays) are capable of un-
derstanding the specific syntax of the unitary assertions.

An individual policy assertion expresses one requirement, behavior or ca-
pability related to messaging (how the message must be built), security (how
the message must be secured through authentication or encryption), reliabil-
ity (how to ensure that the message has been sent/received) and transaction
(what transaction flow must be followed to ensure transaction commit). Ex-
amples of policy assertion languages that can be used are WS-SecurityPolicy
(cf. subsection 5.5), WS-ReliableMessaging (cf. subsection 5.10). Other
languages can be defined using assertion extensions.

Policy assertions are grouped within the WS-Policy XML element Policy,
which constitutes a policy expression. A policy expression can be directly
inserted into a WSDL file so as to make the WSDL a policy requirement
self-describing interface.

Evaluation

As a standard container language for expressing Web Service security require-
ments, WS-Policy semantics are to be taken into account in AVANTSSAR
languages, notably ISSL. WS-Policy is widely supported by Web Service so-
lution editors, especially since it has become a W3C recommendation on
September 2007 in its last version.

5.5 WS-SecurityPolicy
The WS-SecurityPolicy specifications defines a set of security policy asser-
tions for use with the WS-Policy (cf. subsection 5.4) framework with respect
to security features provided in WSS SOAP Message Security (cf. subsec-
tion 5.1), WS-Trust (cf. subsection 5.2) and WS-SecureConversation (cf.
subsection 5.3).

The policy assertions defined in WS-SecurityPolicy fall into the following
main categories:

• Protection assertions identify the parts of the message that is to be
protected and the level of protection in terms of confidentiality (ele-
ments to be encrypted) and integrity (elements to be signed).

• Token assertions specify the type of tokens to use to protect or bind to-
kens and claims to the message. Such token can be typically a Kerberos
token or a SAML token.

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 21/67

• Security Binding assertions identify the type of security binding being
used to secure an exchange of messages. A security binding is a set of
properties that together provide enough information to secure a given
message exchange. A binding can define for instance how tokens are
bound to messages, cryptographic algorithms and key transport mech-
anisms, or the content and ordering of elements in the WS-Security
header.

• The properties are defined with regard to 3 kinds of security binding
assertions:

– transport binding when the required security property is applica-
ble to the transport protocol instead of the Web Services message
level.

– symmetric binding when the initiator and the recipient of the mes-
sage must use the same properties (for instance the same encryp-
tion token or signature token).

– asymmetric binding when message protection is to be provided by
means based on asymmetric key (Public Key) technology.

• WSS and Trust assertions express how certain specific aspects of the
WSS and WS-Trust are to be applied.

Besides, WS-SecurityPolicy defines some ancillary specifications in order
to provide some richer semantic for the security policy model, like Security
Binding Properties which are default values or conditions for a security bind-
ing and that can be used by a binding in a manner similar to how variables
are used in code

Evaluation

WS-SecurityPolicy provides the semantic for expressing a large panel of mes-
sage level security policy assertions. Such assertions should be able to be
translated in the ISSL language at least, although not all elements are to be
considered since some of them are closely related to security implementation
(Kerberos token properties, symmetric and asymmetric keys properties, etc.)
and may not be relevant for higher level formal validation using ASLan.

One should note that WS-Policy (5.5) and its related policy assertion lan-
guages such as WS-SecurityPolicy express only partial aspects of a business
process security requirements, which are the message and communication

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 22/67

level security requirements. The AVANTSSAR languages will have to ad-
dress other security policy aspects such as application level authorization
policies.

5.6 XACML
XACML (eXtensible Access Control Markup Language) is a “declarative”
XML-based access control policy language used to describe the access control
restrictions to actions on objects. Usually, access control models involve a
subject (that is, either a user, a user on behalf of another user, a service, or
a service on behalf of a user) making some access request and the system
either authorizes this access request or denies it. XACML also defines a
processing model, which describes how to operationally interpret the policies.
XACML defines both an access control policy language (to express the access
control conditions) and a canonical XML language to communicate with with
a Policy Decision Point (PDP), to send to the PDP decision requests and
obtain decision responses. This canonical form or language is called the
XACML “context”.

The current version of XACML, Version 2.0, was released by OASIS in
February 2005. Version 3.0 is in preparation at the time of preparation of
this document (June 2008). It is chartered to add generic attribute cate-
gories for the evaluation context and policy delegation profile (administra-
tive policy profile). There are already some prototypical implementations of
XACMLv3.0.

What can be specified in XACML. While traditional access control
systems were based on the identity of the party requesting a resource, XACML
adopts the principle of basing authorization decisions on characteristics or
attributes of the subject, including, if required, its identity. The most com-
mon used attribute in access control is the subject’s role [30, 31] within
the application. The main problem with RBAC is mostly that a system
has different role models for different applications. Thus, XACML supports
attribute-based access control. In a multi-domain, multi-lateral security en-
vironment like SOAs on the Internet, this approach is much more effective
because often the requester and the resource belong to different domains and
are subject to different rules governing identities, authentication procedures
and mechanisms, and permissions. While the identity of the requester may
be meaningless for the owner of the resource, the attributes may be often
translated or matched to corresponding ones. The meaning of an attribute
may be a granted capability for a service, an identity, an asserted pseudonym,

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 23/67

or a non-identifying characteristic of a user (e.g., a degree, the job title, being
over 18 years, the nationality, or any combination of them).

Similarly, basing authorization on attributes of the resource/service re-
quested provides flexibility and scalability that is important in the context
of large distributed open systems.

Not in scope of XACML is the process of providing credentials to sub-
jects and verifying them, that is, the questions who is entitled to grant which
credentials to whom, which credentials a local administration domain will
accept, or even which formats, messages, or technology should be used for
expressing the attributes, transporting the credentials and verifying the in-
tegrity and ownership of them. In this context, credentials are verifiable
assertions that the requester possesses the claimed attributes. One possibil-
ity is to use attribute certificates, which are digitally signed assertions about
the credential owner by a credential issuer. The attribute certificate would
then contain the attributes that specify access control information associated
with the certificate holder (e.g., age, citizenship, credit status, group mem-
bership, role, security clearance). Another approach, better integrated with
XACML, is SAML.

XACML defines a simple yet very efficient and flexible class structure.
Roughly, a Policy is composed of a Target, a set of Rules and an optional
set of Obligations associated with a request. The Target element specifies
the conditions that the requesting Subject, Resource and Action must meet
for the Policy (or, in the proper context the PolicySet or the Rule) to be
applicable. It provides an efficient method to indexing and looking up the
applicable policy set or rules to a given request. To evaluate the rules of a
Policy, the structure of the Rule is used: Target, an Effect and Conditions.
As mentioned above, the Target describes if the Rule is applicable or not.
The Conditions test the relevant attributes and decide if the Effect is ap-
plicable. All the outcomes are combined together, and yield an Effect of
Permit, Deny or Indeterminate (an error condition, or ambiguity, which will
be resolved higher in the hierarchy).

More formally, the three top-level XACML elements are: Rule, Policy
and PolicySet. The Rule element contains a Boolean expression that can be
evaluated on its own, but that is not intended to be accessed in isolation by a
PDP. Instead, the Policy element, which contains a set of Rule elements and
a pointer to an algorithm for combining the results of their evaluation, is the
basic unit of policy used by the PDP, and so the basis of an authorization
decision.

The PolicySet element contains a set of Policy or other PolicySet ele-
ments and a specified procedure for combining the results of their evalua-
tions. It is the standard means for combining separate policies into a single

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 24/67

combined policy.

Semantics of XACML. The study of authorization by logical means was
initiated by Abadi et al. [4]. For related more recent work see [7, 8, 28, 9, 36],
and for a survey see [3].

There is work on providing semantics to XACML via Z (see [52]) and via
Haskell (see [39] (for XACML v1.1), and [56] (for delegation in XACML). It
is not surprising that the semantics of obligations in not formalized, as their
intended meaning is really out of scope of XACML and only provided by the
PEP implementation.

Data-flow. Roughly, the usage of XACML is the following: a subject wants
to access a resource, whose access is controlled by a Policy Enforcement Point
(PEP). When the subject makes the resource request, the PEP constructs an
XACML request containing action, resource and other relevant informations,
and sends it to the responsible Policy Decision Point (PDP) for making the
authorization decision. The PDP will gather the applicable policies and de-
termine the authorization decision. The authorization decision, response will
be expressed using the XACML response language and deliver the decision
to the PEP, which can then permit or deny access to the requester.

In more detail, the model operates by the following steps [14].

1. The Policy Access Points (PAPs) write policies and policy sets and
make them available to the PDP. These policies or policy sets represent
the complete policy for a specified target.

2. The access requester sends a request for access to the PEP.

3. The PEP sends the request for access to the context handler in its
native request format, optionally including attributes of the subjects,
resource, action and environment.

4. The context handler constructs an XACML request context and sends
it to the PDP.

5. The PDP requests any additional subject, resource, action and envi-
ronment attributes from the context handler.

6. The context handler requests the attributes from a Policy Information
Point (PIP).

7. The PIP obtains the requested attributes.

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 25/67

8. The PIP returns the requested attributes to the context handler.

9. Optionally, the context handler includes the resource in the context.

10. The context handler sends the requested attributes and (optionally)
the resource to the PDP. The PDP evaluates the policy.

11. The PDP returns the response context (including the authorization
decision) to the context handler.

12. The context handler translates the response context to the native re-
sponse format of the PEP. The context handler returns the response to
the PEP.

13. The PEP fulfills the obligations.

14. If access is permitted, then the PEP permits access to the resource;
otherwise, it denies access.

Evaluation

Besides the fact that the language is the new standard in the context of access
control for Web Services and SOA, XACML has several aspects that will
be important for AVANTSSAR, including the attribute-orientation, which
makes XACML suitable to working in a federated multi-party SOA, and the
possibility for distributed composition of policies (combining all appropriate
policies from different places and consistently evaluation the result).

On the other hand, some maybe for our purposes the language is not
powerful enough. First, the query/respond allows only Permit, Deny, or In-
determinate, but does not provide hints, negotiation mechanisms, or logic
support. Second, trust management is out of scope (whose credentials with
which type of assertions do I accept?). Third, the meaning of obligations is
not explicit and the way that obligations are implemented (at the PEP) may
be not optimal (better in many cases would be in a monitor process, inde-
pendent of the access control. Last, it does not provide neither hierarchical
attributes (just list of attributes) nor purposes of actions, which could be
very convenient for our purposes.

5.7 WS-Federation
The WS-Federation specification [16] defines mechanisms to support feder-
ation between different security realms, i.e. the authorized access for prin-
cipals of one realm to resources managed by another. The WS-Federation
framework builds on the specification for WS-Security and WS-Trust.

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 26/67

Specifically, WS-Federation relies on the Security Token Service (STS)
model defined by WS-Trust, and a protocol (involving Request Security To-
ken and RST Response messages) for handling such tokens, which contain
information described by WS-SecurityPolicy [40]. The STS is used to broker
an establishment of a trust relationship between resource providers / relying
parties and other service providers. The goal is to simplify the development
of federated services by reusing the WS-Trust STS model and protocol. Dif-
ferent federation services can be developed as variations of the base STS.

Processing in WS-Federation is kept independent of the security token
format and the type of token being transmitted. WS-Federation defines a
metadata model and a document format describing how services can be dis-
covered and combined, as well as their access policies. For example, this may
mean supplying WS-Addressing endpoint references (EPRs) to participants.

Types of services:

• Authorization can be viewed as a decision brokering service. Inter-
operability of services requires a common model for interacting with
authorization services. This includes two STS extensions: the pass-
ing of additional context about a token request, and a Claims Dialect
mechanism for expressing common claims requires to process requests.

• Authentication Type: a set of URIs is defined for specifying the
wst:AuthenticationType parameter in RST and RSTR messages.

• Attribute Services: WS-Federation defines a model for accessing at-
tribute services which may be needed to establish a federation context,
e.g., information for advanced functionality or personalized user expe-
rience.

• Pseudonym Services allow principals to have different aliases in dif-
ferent realms or for different resources. They provide different kinds of
identity mappings, e.g., with pseudonyms established per login or per
service. In combination with the attribute services, they allow infor-
mation to be provided about a requestor identified by a pseudonym, if
the requestor has authorized this.

• Privacy: extensions to WS-Trust syntax are defined to express both
privacy requirements of a requester and mechanisms used by a STS
for issuing a token. This may include, e.g., identification of sensitive
claims in a token that must be protected by encryption.

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 27/67

Evaluation

WS-Federation provides high-level features based on WS-Security and WS-
Trust. While the latter will be reflected in the language as mentioned above,
specific language features which directly reflect WS-Federation concepts are
not anticipated at this point.

5.8 SAML
The Security Assertion Markup Language (SAML) is an XML standard for
assertions regarding identity, attributes and entitlements of a subject [17]. It
allows to exchange authentication and authorization data between security
domains, that is, between an identity provider (a producer of assertions) and
a service provider (a consumer of assertions). The primary example for the
use of SAML is is the Web Browser Single Sign-On (SSO) problem.

The service provider relies on a SAML assertion from the identity provider
about the principal to make an access control decision. This setup requires
the existence of local authorization services from an identity provider, how-
ever, SAML provides a level of abstraction, since it does not specify how they
are implemented. SAML is a dialect of XML, uses the XML signature and
encryption facilities, and relies on HTTP, specifying the use of SOAP.

Generally, a SAML assertion is a statement made at a given time by an
issuer regarding a subject provided that certain conditions hold. SAML as-
sertions can contain three types of statements: authentication, attribute and
authorization decision statements. Each of these corresponds to a type of
query which forms part of a SAML request-response protocol. The structure
of an assertion is described by a SAML profile, which may be defined depen-
dent on the desired application. At the implementation level, SAML mes-
sages admit bindings to several standard message types and protocols. [41].

SAML provides XML formats for transmitting security information, de-
fines how they work with underlying protocols, and specifies message ex-
changes for common use cases. In addition, it supports several privacy
protection mechanisms (providing means to determine security attributes
without revealing identity), and specifies a schema that allows systems to
communicate the SAML options they support. SAML is linked to the WS
family of standards: SAML assertions are one supported security format for
WS-Trust.

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 28/67

Evaluation

The AVANTSSAR languages will provide primitives to specify security as-
sertions. While syntactically different, the languages should provide asser-
tion types that semantically match the main types of assertions provided by
SAML.

5.9 WS-Reliability
WS-Reliability is a SOAP-based specification for reliable messaging require-
ments [47]. Subsequently to its standardization in 2004 (v. 1.1), the WS-
Reliable Messaging specification was developed by the same OASIS Tech-
nical Committee. WS-Reliability separates reliable messaging issues into a
protocol (“wire”) aspect which deals with the horizontal contract between
sender and receiver (e.g., message headers, choreography) and a quality of
service aspect which deals with the vertical contract between service provider
and service users. The latter defines a set of abstract operations on messages
(such as Deliver, Submit, Respond and Notify). The specification assumes
transparency of SOAP intermediaries and support for message integrity (e.g.,
as in WS-Security).

5.10 WS-ReliableMessaging
WS-ReliableMessaging [18] is an OASIS standard that describes a transport-
independent protocol to transfer messages reliably between nodes; it also
provides a SOAP binding. The protocol relies on other specifications from
the WS-family to identify policies and service endpoints; in particular it can
be combined with WS-Security and WS-Policy for secure reliable messaging.

The protocol supports various reliability features, including ordered de-
livery, duplicate elimination and guaranteed receipt. The standard also dis-
cusses security threats (including integrity threats, resource consumption
and spoofing); the implementation of countermeasures is supposed to be
done using common web service solutions such as Transport Layer Secu-
rity or SOAP Message Security (WS-SecureConversation/WS-Trust). WS-
ReliableMessaging is accompanied by a specification for a domain-specific
policy-assertion, to be used together with WS-Policy.

Evaluation

The AVANTSSAR languages should provide different levels of abstraction
for communication between principals, from low-level message send/receive
to communication with various authentication guarantees. In this respect, it

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 29/67

is desirable to include an abstraction level which closely matches the specifi-
cations of WS-ReliableMessaging.

5.11 WS-MetadataExchange
In general, metadata is information that describes other data than the core
functional aspects of a service. In Web Services, metadata represent addi-
tional information about services that can be essential for the interaction
with other endpoints. The WS-MetadataExchange specification [5] defines
a format for metadata that is adaptable to future changes, and also defines
how metadata can be retrieved from Web Services as a WSTransfer resource.
A requester may ask for all available metadata about a certain Web Service
or just about a particular type of metadata.

To bootstrap communication with a Web Service, this specification de-
fines three request-response message pairs to retrieve three types of metadata:
one retrieves the WS-Policy associated with the receiving endpoint or with a
given target namespace, another retrieves either the WSDL associated with
the receiving endpoint or with a given target namespace, and a third retrieves
the XML Schema with a given target namespace. Together these messages
allow efficient, incremental retrieval of a Web Service’s metadata.

Evaluation In the context of AVANTSSAR, besides the basic WSDL doc-
ument, WS-MetadataExchange (together with WS-Transfer) can be used to
exchange the extra-functional aspects of a service with other endpoints.

6 Context, Coordination and Transaction-re-
lated Protocols

For distributed applications, additional mechanisms are required to ensure
reliability and consistency of the application. Within the context of service-
oriented architectures such a mechanism is usually referred to as coordination.
In particular, the WS-Coordination [58] standard provides such a mechanism
for Web Services. In combination with the more low level transaction mech-
anisms, it can ensure reliability and consistency of an application.

The WS-Coordination framework unifies several popular coordination
models. It provides three main mechanisms: activation, registration, and co-
ordination of services. An activation service enables an application to create
a coordination instance or context. A registration service enables an applica-
tion to register for coordination protocols. These services do not contain any
security measures, and are solely preparation steps towards coordination.

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 30/67

Lower level mechanisms provide support for transactions. The notion
of transaction is a fundamental concept in traditional reliable distributed
applications. A transaction is considered to be atomic, in the sense that if it
is not fully completed, the result is equal to not performing the transaction.
In the basic case, a transaction is also indivisible: it is considered to be a
single action which cannot be split into multiple phases. Such a mechanism
is provided by WS-AtomicTransaction [58], which is suitable for transactions
of a short time duration. However, some transactions may have a longer
duration, and it may be desirable to reveal intermediate data or allow for
splitting into multiple phases. Such a divisible transaction mechanism is
provided by WS-BusinessActivity [58]. We describe these three standards in
more detail below.

6.1 WS-Coordination
An application in a service-oriented architecture usually comprises a series of
activities. The management of such a series of tasks over time is performed
by the coordination mechanism. It provides a context for the activation of
services, which allows propagation of an activity to other services.

6.2 WS-AtomicTransaction
The WS-AtomicTransaction standard builds on WS-Coordination, and in-
cludes three agreement coordination protocols, which consist of variations of
Two-Phase Commit (2PC) protocols. These are:

• Completion

• Volatile 2PC

• Durable 2PC

The first, completion, is a combination of the other two. In the comple-
tion protocol, the coordinator begins with volatile 2PC, and then proceeds
through durable 2PC.

There are two main differences between WS-AtomicTransaction and a
standard two-phase commit protocol [50]: First, the distinction between
volatile and durable 2PC participants is specific to WS-AtomicTransaction.
It aims to distinguish between participants based on the objects that are ex-
pected to managed by them: either volatile (e.g. caches) or durable (e.g. data-
bases). Second, the protocols defined in WS-AtomicTransaction all include
an explicit registration procedure. A peculiarity of this registration phase

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 31/67

is that a durable participant can register while volatile participants have
completed their registration phase (i.e. are in their preparation phase).

6.3 WS-BusinessActivity
The WS-BusinessActivity standard essentially provides a mechanism for han-
dling exceptions during a series of activities. Contrary to the case of an
atomic transaction, intermediate results may already have been released or
published, and hence the triggering of external rollback events may be re-
quired to undo the partial execution of the business activity. Such rollback
events are also referred to as compensations. However, unlike e.g. ACID
transactions in a DBMS [37], the compensation behavior is a part of the busi-
ness logic: it must be explicitly specified. This allows for a looser coupling of
the individual services, which is a more appropriate model for service-oriented
architectures.

6.4 Evaluation
In the context of AVANTSSAR, there are many security considerations for
coordination that are specific instances of more general Web Service security.
One security consideration that is particular to coordination is related to
availability and guaranteed message delivery. If a malicious party can block
certain messages, rollbacks can be trivially forced. Alternatively rollbacks
may be prevented from being completed for WS-BusinessActivity, and also
for WS-AtomicTransaction in case there is no Expires attribute (which is
optional).

Certain aspects of WS-AtomicTransaction (section 6.2) which are not
shared with the well-understood standard atomic transaction protocols have
to be used and composed prudently. Formal verification techniques developed
in AVANTSSAR project can be of great help in assessing these aspects.

7 Registry (publishing /discovery)
Service providers can advertise their services by sending their profiles to
registration and discovery services, such as UDDI.

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 32/67

7.1 UDDI (Universal Description Discovery and Inte-
gration)

The current version of UDDI, version 3.0.2, was released by OASIS in Febru-
ary 2005 [63, 13]. It provides the infrastructure required to publish and
discover services in a systematic way. UDDI specifies an XML-based reg-
istry wherein service providers can register their available Web Services and
whose content can be browsed by clients. A common usage is the description
of every particular service in WSDL and their registering in a UDDI registry.
The UDDI data model is an XML schema that describes services, using the
following structures:

• businessEntity: represents the provider of Web Services. It contains in-
formation about the company, including contact information, industry
categories, business identifiers and a list of services provided.

• businessService: represents an individual Web Service provided by the
business entity. Its description includes information to bind to the Web
Service, its type and taxonomical categories.

• bindingTemplate: represents the technical implementations of the Web
Service represented by the business service structure.

• tModel: represents metadata used for more detailed informations about
a service.

• publisherAssertion: represents the association between some businessEn-
tity structures according to a specific type of relationship, such as sub-
sidiary or department.

• subscription: is used to subscribe to events about changes of a list of
entities.

As a registry is useless without some way to access it, UDDI specifies
two interfaces for service consumers and service providers to interact with
the registry. Service consumers use the Inquiry API to find a service, and
service providers use the Publisher API to register a service.

The following example shows how an X Company would register its in-
formations, service description, and online service access information with
UDDI:

• Obtain an authentication token from a UDDI operator. Each operator
has different terms and conditions for authorizing access to its replica
of the registry.

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 33/67

• Use the Publisher API to register business information that would be
helpful for searching, i.e., filling the tModel information.

• Use the Inquiry API to test the retrieval of the information, including
binding template information.

After the X Company has updated its UDDI entry with the relevant infor-
mations, companies can look up contact information in the UDDI registry
and obtain the service descriptions and access points for the Web Services
that X Company publishes.

A UDDI registry offers a mechanism to manage Web Services, so that they
can be discovered and consumed. UDDI can be used to represent information
about Web Services in a way such that queries can then be issued to a UDDI
Registry at design-time or run-time. Here are some scenarios that are enabled
by the combination of the UDDI information model and the UDDI API set:

• Publishing a service in a registry.

• Search for information about a particular service in a UDDI registry.

• Determination of the security and transport protocols supported by a
given Web Service.

• Replication of data about a service. For instance, a registry operator
want to achieve data replication between sites.

• Transferring custody of data about a service (inter-registry communi-
cation).

Evaluation

Besides the discovery of a service, one could also consider the security as-
pects of the discovery of services: for instance, what about the trust in the
case of transferring custody of a service. The security model for a UDDI
registry can be characterized by a collection of policies. The security policies
and mechanisms in the UDDI specification are related to data management,
user identification, user authentication, user authorization, confidentiality of
messages and integrity of data. For this purpose UDDI provides a Security
Policy API Set.

7.2 WS-Discovery
The WS-Discovery standard [45] provides a mechanism for finding the specific
addresses of web-services at run-time. It relies on a multicast protocol to

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 34/67

send out a request for discovery, to which services that match the constraints
will respond. When a web-service provider joins the network, it sends an
announcement message to the multicast group in order to minimize the need
for polling.

Various security threats have been identified for this service [45], includ-
ing message alteration, replay, and denial of service attacks. To prevent
these, the standard recommends, but does not enforce, using standard cryp-
tographic techniques such as digital signature schemes and employing time-
outs.

Evaluation

Validation techniques for WS-Discovery, in particular, need to address the
following two aspects:

1. Interactions between this mechanism and WS-Security and WS-Trust
are envisioned in the documentation [45]. Since the documentation is
not precise about how the security mechanisms should be implemented
(e.g. no particular interfaces are specified), interactions between con-
crete implementations may result in unexpected security vulnerabili-
ties. Such interactions between WS-Discovery and other security ser-
vices, indeed, bring up composition concerns. In order to establish
the security of the overall system, AVANTSSAR needs to capture the
WS-Discovery mechanism, and its composition with other modules.

2. WS-Discovery relies on a multicast protocol. Modeling such communi-
cations and the related properties in existing formalisms might require
enhancements in the specification language and verification tools.

8 Business Process Language Layer
Beside core Web Service specifications - such as WSDL, SOAP, and UDDI
- a range of additional specifications are being developed that enhance the
capabilities of Web Services. These extensions of Web Services address differ-
ent functional areas such as messaging, transactions, resource management,
policies, security, or workflows.

The design of the AVANTSSAR languages need to take into account
existing languages for service description, policy definition and service or-
chestration.

Orchestration Languages like WSFL (cf. Section 8.1) and WS-BPEL (cf.
Section 8.2) define the sequence and conditions in which the processes within
a business are executed.

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 35/67

A business process defines a flow of activities (e.g., to grant a loan, to
ship goods for a customer) to be executed by a set of actors to achieve some
business goals.

The activity flow specifies the orchestration needed to complete the goal.
As described in the [43] paper, for services-based architectures, the activ-
ity flow can be implemented in two ways, using traditional methods (such
as programming languages e.g., C# or Java) or using a Business Process
Definition language.

An interesting book [38] explains the Business Process Modeling concepts
in an overview of the different languages that expresses the Business Process.
As stated in M.Havey’s book, a business process that orchestrates complex
system interactions can also be viewed as services that communicate with
the processes of other companies according to well-defined contracts. We
will focus on languages that fall in the scope of AVANTSSAR, meaning that
we will consider the properties that are of interest for the specification of
trust and security properties of the services and their associated policies.

Web Services can be combined; the business logic of so-called composite
applications can be specified using Business Process languages.

Service-oriented applications as well as their security requirements, are in
general not static but rather continuously evolving. Their interaction takes
place in highly dynamic environments where the composition of services can
be undertaken at runtime. Some security policies are dynamically modified
(e.g., for incident handling or in case of emergency), and agents may join or
be excluded from a community sharing some security context.

Atomic services provide functionality not only for the business logic, but
they also can provide the basic building blocks of security functionality. They
cover, for instance, identity providers, time-stamping functionality, provision
of credentials, access control rule evaluation (also known as policy decision),
and logging or audit services.

Consider the following example: in the Banking Services application sce-
nario, we expect to focus on the following atomic services: authentication
and authorization services, non-repudiation services, archive and logging ser-
vices, services enforcing separation of duty constraints and others establishing
secure communication channels, etc. These services and their composition
(in order to accomplish more complex security requirement, e.g., accurate
auditing trails using non-repudiation, logging, authentication and authoriza-
tion services) will be validated mainly from a static point of view. Dynamic
validation will also be experimented on a few case studies originating from

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 36/67

scenario extensions. For instance, we can easily imagine a scenario extension
in which a personal financial advisor service is provided by a financial credit
institution to dynamically select from a dynamic set of different banks (all
making available a loan origination process service) the best loan offer for a
customer.

For the specification of the AVANTSSAR industrially-suited language,
we need to study the languages specifying business process behavior based
on Web Services.

Although these orchestration languages are suitable to express the com-
position aspects, they are not specifically oriented towards security, thus we
need to provide extensions to describe security requirements and policies.
For instance, ASLan and ISSL need to express authorization, obligation,
delegation, separation of duty, revocation,etc. within the Business Process
language.

8.1 WSFL (Web Services Flow Language)
WSFL is an XML-based language for describing the composition of Web
Services (WSs). By design, WSFL can be seen as an extension of the Web
Services Description Language (WSDL), which describes what a WS can do,
where it can be reached, and how to invoke it. As a consequence, WSFL
naturally fits in the WSs computing stack (cf. Figure 1 of the deliverable)
where it can be regarded as an additional layer on top of WSDL.

What can be specified in WSFL. Two types of WSs composition can
be specified in WSFL: flow models and global models. The former specifies
how to use the functionality provided by the collection of composed WSs
(this is also known under the names of flow composition, orchestration, and
choreography). The latter specifies how the composed WSs interact with each
other. Another key feature (for modularity and scalability of specifications)
of WSFL is its ability to support recursive composition of WSs, i.e. every
WS composition can be seen as a (single) WS and then used as a component
in further compositions.

Roughly, a flow model can be seen as the specification of a particular
instance of a WS obtained by composing a set of available WSs to handle
a certain business process for a company; while a global model is a spec-
ification of a generic WS capable of performing a certain business process
once instantiated with (bound by) a set of suitable WSs. To better illus-
trate the difference between flow and global models in WSFL, it is helpful

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 37/67

to consider the following two related scenarios. First, an enterprise wants
to implement a business process for processing purchase orders using WSs,
e.g. the following processing steps must be performed: collecting orders from
customers, checking the credit history of customers, rejecting/accepting or-
ders, processing orders, and shipping goods. As a first step, they should find
WSs offered by third parties that can be used to realize the various activities,
such as a shipping company, a goods-supplier company, and a bank. Then,
they would use a WSFL flow model to define the structure of the business
process: WSFL activities model processing steps (e.g. collecting orders) and
control and data links specify the control and data flows between these, re-
spectively. Furthermore, for each activity a service provider is identified (by
means of locators) which is responsible for the execution of the process step
together with the association between activities in flow model and operations
offered by the service provider (by using plug links). The second scenario is
a variant of the previous one: an enterprise would like to offer a WS that
mediates between customers who want to order goods and service provides
who produce and deliver goods. As before, the business process to handle
purchase orders is described a WSFL flow model where the activities are not
bind to particular services providers. Instead, only the role (the kind) of
service provider are identified for each activity and a WSFL Service Provider
Type interface is added in order to specify which operations are provided and
which are required.

Semantics of WSFL. The semantic of WSFL is given in terms of a flow
metamodel that describes how WSs are wired together into flows that repre-
sent business processes. The metamodel is described in terms of a particular
class of labeled, directed, and acyclic graphs.

An activity (i.e. a business task to be performed as a single step within
the context of a business process) is represented by a node with several fields.
Such fields are related both to the data flow and the control flow. Regarding
the data flow, there are several fields for input/output/fault messages which
correspond to the input/output/exception parameters of the operation used
to implement the activity. Each message can have multiple parts, each one
defined by some type system (e.g. XSD).

Control-flow. Activities are connected by control links. A control link
is a directed edge that prescribes the order in which activities are to be
performed (i.e. it specifies the control flow): first the source activity must
be completed before the target can be initiated. A control link is labeled by
a transition condition, i.e. a Boolean expression on the messages produced

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 38/67

by some “previous” activities, not necessarily the source activity of the edge
labeled by the condition but some other activity which is backward reachable
from the source node. Activities produce actual data values for their output
messages which are substituted as actual parameters of the formal parameters
of transition conditions. Indeed, the target activity can be initiated only if
the transition condition evaluates to true. A start activity has an incoming
control link labeled by true as transition condition. An end activity has no
outcoming control link.

A fork activity has more than one outgoing control link. When an activity
A completes, all control links leaving A will be determined and all associated
transition conditions will be evaluated in their actual parameters. The target
activities of all control links whose transition conditions evaluate to true
are exactly those activities which are to be performed next. Those target
activities whose conditions evaluate to false are eliminated by a procedure
called death-path elimination. Indeed, parallel flows are to be synchronized
at a later time. This is done through join activities, i.e. activities with more
than one incoming control link. The decision whether a join activity is to be
performed or not depends on the so-called join condition, which is a Boolean
expression whose formal parameters refer to the transition conditions of the
incoming control links of the join activity.

An activity has two more fields. The former is the implementation field
specifying which kind of service is needed at run time to actually perform
the business task represented by the activity. The latter is the exit condi-
tion, the purpose of which is to determine whether or not the execution of
the implementation activity completed the business task represented by the
activity. The expression can refer to the output message of its associated
activity or even to output of any activity that ran before on the control path
of the subject activity. The exit condition is evaluated once the operation
of the implementing port type terminates. If the exit condition evaluates to
true, the activity is considered to be finished and the control flow continues
to the next activity(ies); otherwise, the activity is executed again. One mo-
tivation to have an exit condition associated to an activity is the capability
to distinguish between the situation in which the activity implementation
returned successfully and the situation in which this is not the the case, i.e.
the business task completed has been interrupted. The other motivation for
exit conditions is to introduce a controlled form of loops: an activity is it-
erated until its exit condition is satisfied. This is an important extension as
the metamodel does not support cyclic graphs to void ambiguous situations.

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 39/67

Data-flow. Data links are the second and last kind of directed and labeled
edges in the graphs metamodel. A data link specifies that its source activity
passes data to the flow engine which in turn has to pass this data to the target
activity of the data link. A data link can be specified only if the target of
the data link is reachable from the source of the data link through a path
of control links. This constraint avoids dead-locks or situations where an
activity tries to consume data which are not yet produced. It is not required
that data be always passed to an immediate successor of its producer. A
map prescribes how a field in a message part of the target’s input message of
a data link is constructed from a field in the output message’s message part
of the source of the data link.

Evaluation. The two different notions of composition (flow or global mod-
els) in WSFL seem to be particularly interesting. The former allows one to
specify a particular instance of a composed WS while the latter provides one
with a specification of a generic WS which still needs to be instantiated. We
believe these two notions are useful structuring mechanisms for specifications
of composed WSs: global models describe generic and reusable WSs while
flow models are component designed to satisfy particular needs.

8.2 WS-BPEL, WS-HumanTask and BPEL4People
WS-BPEL 2.0 (Web Services Business Process Execution Language Version
2.0) [46] is an XML-based language for describing Web Service composition
in terms of service orchestration. The WS-BPEL standard is based on other
WS-* specifications, more precisely the WS-BPEL process model is layered
on top of the service model defined by WSDL 1.1 (see Section 4), that is
a stateless model of correlated request-response (or solicit-response) inter-
actions or uncorrelated one-way interactions (one-way or notification) and
adds support for business transactions. Note that, e.g., the standard WSDL
SOAP binding comprises one-way and request-response primitives only, thus
providing an even weaker service model. Other bindings may support the
full WSDL process model.

As defined in the abstract of BPEL specification [46], WS-BPEL is a
language for specifying business process behavior based on Web Services.
Processes in WS-BPEL export and import functionality by using Web Service
interfaces exclusively. BPEL processes are executed by an execution engine,
which publishes BPEL processes through a Web Service interface. Thus,
every BPEL-process composed of Web Services is a Web Service itself and
can be used as a component of higher-level BPEL-processes.

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 40/67

For a better understanding of the WS-BPEL context it makes sense to
have a short look on the history of WS-BPEL. In 2001, both IBM and
Microsoft had each defined their own languages for Web Service composi-
tion, namely the graph-based WSFL (see Section 8.1) and the calculus-based
XLANG (whose Specification is deprecated and isn’t available any more on
the Web), respectively. To be able to compete against other emerging lan-
guages in the context of Web Service composition, IBM and Microsoft com-
bined their languages into a new one: BPEL4WS (BPEL for Web Services)
which represents the convergence of the ideas and concepts of XLANG and
WSFL specifications. In April 2003, BEA, IBM, Microsoft, SAP and Siebel
Systems submitted BPEL4WS 1.1 to OASIS for standardization. OASIS WS-
BPEL technical committee voted on 14 September 2004 to change the name
of the specification to WS-BPEL 2.0 (instead of BPEL4WS as submitted)
to align the name of the specification with other Web Service standard nam-
ing conventions (WS-*) and to expose the significant enhancements between
BPEL4WS 1.1 and WS-BPEL 2.0. It is common to use BPEL as a shortcut
to WS-BPEL 2.0 as it will be used in the remaining of this deliverable.

Vanilla BPEL is designed to specify the behavior of business processes
as long as all the activities of processes are Web Services and no human
interaction is needed, which is a significant gap for many real-world busi-
ness processes. In June 2007, Active Endpoints, Adobe, BEA, IBM, Oracle
and SAP tried to fill this gap and published WS-HumanTask (Web Services
Human Task, Version 1.0) [1] and BPEL4People (WS-BPEL Extension for
People, Version 1.0) [2] specifications. These specifications describe how hu-
man interaction could be implemented in BPEL processes. BPEL4People is
not a new version of BPEL but extends BPEL using WS-HumanTask. Both
specifications went into OASIS specification process quite recently.

What can be specified in BPEL. BPEL provides a language for the
specification of both, executable and abstract business processes composed
of Web Services. Abstract business processes are partially specified processes
that are not intended to be executed and, thus, only describe the observable
behavior of a process (“behavioral interface”). This interface captures con-
straints on the ordering of messages to be sent to and received from a service.
Using abstract processes, concrete operational details of a service can be hid-
den from, e.g., a business partner.

An executable process on the other side augments an abstract process
with all of the required concrete operational details so that the process can
be executed by a BPEL execution engine. This is achieved by defining the
execution order of a set of activities, the partners involved in the process, the

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 41/67

messages exchanges between the partners, and reactions to specific events,
exceptions or faults. Moreover for handling of exceptions, BPEL introduces
a mechanism for defining how individual or composite activities within a unit
of work are to be compensated, i.e., undone in an application-defined way.
For a short introduction on the concept of compensations see Section 6.3.

The formal semantics of BPEL can be expressed and control flow of BPEL
can be analyzed using Petri nets [49].

Semantics of BPEL. BPEL provides a grammar to describe arbitrary
complex business processes. From a bird’s eye view, a BPEL process defines
the interaction between partners. Thus, the definition of partners is the first
step in a BPEL process. Partners are the Web Services involved in the exe-
cution of a service, i.e., the Web Service invoking the BPEL process (client),
or Web Services that are invoked by the BPEL process (service providers).
Partners are defined through partner links that represent the interaction of a
BPEL process with the client or service providing Web Services, containing
roles, and the WSDL ports types associated with a role.

Because business process execution engines usually execute several pro-
cesses and even instances of processes concurrently, a mechanism relating
a response to the corresponding request and therefore to the corresponding
process is needed. To this end, BPEL offers a correlation construct to spec-
ify the message elements that uniquely identify a process instance via XPath
expressions.

On closer inspection, BPEL defines a business process that relates ac-
tivities. There are two kinds of activities: basic and structured activities.
Basic activities describe elementary steps of the process behavior, structured
activities are those which encode control flow logic on groups of activities
contained within them. Structured activities can be nested and combined in
arbitrary ways.

There are only few basic activities that do not affect the control flow:

• assign: copying data from one variable to another, as well as construct-
ing new data using expressions,

• wait: waiting for a specified period of time,

• empty: doing nothing.

Control flow. The other basic and structured activities affect the control
flow of a process:

• Basic activities

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 42/67

– invoke, receive, and reply: communication primitives, which are
self-explanatory and are used to communicate along partner links,

– exit: terminates the entire process instance,
– throw, rethrow: signal a fault/exception in the execution of the

process.

• Structured activities

– scope: groups activities into blocks to which event-, fault-, and
compensation-handlers may be attached,

– sequence: defines a sequential execution order,
– if, while, repeatUntil, forEach: encode conditional or repetitive

execution,
– pick: selective event processing. From a mapping from events

to activities, only the activity associated with the first occurring
event is executed,

– flow: provides concurrency and synchronization,
– compensate, compensateScope: start compensation of the effects

of already completed activities.

In addition to the structured activities, just like WSFL, BPEL offers con-
trol links for biasing the control flow, more precisely they support the def-
inition of precedence, synchronization, and conditional dependencies inside
flow-activities. A control link is a directed relationship between two activ-
ities and defines, in which order the activities must be completed. Control
links may be used in combination with the associated notions of transition
condition and/or join conditions.

Data flow. Variables are used in BPEL processes to store, reformat, and
transform messages and to store the state of a process instance. Each variable
has a type assigned in form of a WSDL message type, an XML Schema
element, or an XML Schema simple type.

Usually, there is a dedicated variable for each message a process sends
or receives. Variables can be modified by activities, e.g. assign, which can
be used to copy data from one variable to another, as well as to construct
new data using expressions, and can be used as values for input-variables or
containers for output- and fault-variables.

In BPEL, there are no data links like in WSFL 8.1. The data flow must
be explicitly modeled by the process designer using variables and activities.

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 43/67

For example, a process designer assigns the result of a Web service invocation
to a variable X, modifies the structure and content of the variable X to be
compliant to the expected input of the next Web service that is invoked by
the process, and uses X as input variable for the next Web Service invocation.

What can be specified in WS-HumanTask and BPEL4People. The
specification of WS-HumanTask [1] (or WS-HT for short) states, that a hu-
man task is a service, which is “implemented” by people. Such a human
task has two interfaces. The first interface exposes the service offered by the
task, e.g., a translation service, as Web Service. The second interface allows
people to deal with tasks, e.g., to query for tasks waiting for them or to work
on these tasks.

The contribution of WS-HT is a definition of human tasks, their prop-
erties, and their behavior including timeouts and escalations, and a stan-
dardized Web Service interface dealing with, e.g., creation of a human task,
annotation of tasks with comments, or notification of a client when a task is
completed. An implementation of WS-HT will be some kind of task inbox or
task management system, where people or groups of people can select tasks
assigned to them, process them, and notify the system when they have fin-
ished a task. The task management system will then notify the client waiting
for the termination of the human task it had initiated.

WS-HT additionally defines a protocol based on WS-Coordination (see
Section 6.1) that allows external applications to talk to a WS-HT compli-
ant task management system. This protocol supports role based interaction
of people, provides means of assigning users to a generic human role, and
supports scenarios like dual control or the four-eye principal, escalation, and
chained execution.

The intention of WS-HT is to define how to interact with task manage-
ment systems or task inboxes in a standardized way addressing the issue of
vendors of business process management systems having invented their own
task inboxes with proprietary interfaces making interaction between different
systems difficult. The internals of task inboxes is out of scope of WS-HT.

WS-HT itself is independent of BPEL, so it can be used with BPEL as
well as with proprietary systems of any vendor. BPEL4People [2] is one as-
pect of a client for WS-HT with the aim of defining a standardized extension
within BPEL for how to interact with WS-HT. The BPEL4People specifi-
cation defines a people activity as new basic activity using the extension
mechanisms provided by the BPEL specification. This new activity enables
the specification of human interaction in BPEL: it allows specifying tasks
local to a process or use tasks defined outside of the process definition.

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 44/67

Evaluation. With at least most major players in the industry participat-
ing in the BPEL open standards process, BPEL can be considered the stan-
dard for Web Service orchestration nowadays. The AVANTSSAR languages
should rely on BPEL because it introduces a common grammar for describing
service orchestration.

The BPEL specification notes, that although BPEL is inherently binding
neutral, it is strongly recommended that business process implementations
use WS-Security (see Section 5.1) when using a binding where messages might
be modified or forged and security is a concern.

8.3 BPMN (Business Process Modeling Notation)
The Business Process Modeling Notation (BPMN) [19] was developed by
Business Process Management Initiative (BPMI) [53], and is now being main-
tained by the Object Management Group (OMG). The current version is 1.1
but the adoption of BPMN 2.0 is scheduled before the end of 2008.

What can be specified in BPMN. BPMN supports both the orches-
tration of Web service and the execution of human workflow tasks, while
enabling the choreography of multiple business processes, thus by providing
a Business Process Diagram (BPD). This flow-chart format is designed to
be used by the business process analysts. BPMN is constrained to support
only the concepts of modeling that are applicable to business processes. It
could be a good candidate for the AVANTSSAR Industrially-Suited language
because of its simplicity. It is made of simple diagrams with a small set of
graphical elements.

Semantics of BPMN. BPMN defines a Business Process Diagram (BPD),
based on a flowcharting technique to build graphical models of business pro-
cess operations. A Business Process Model can be viewed as a network of
graphical objects representing activities and the flow controls defining their
order of performance.

The semantic correctness of BPMN process models can be checked using
a mapping to Petri nets [29].

BPMN also provides a formal mapping to an execution language of Busi-
ness Process Management Systems (i.e., BPEL4WS).

BPMN is intended to bridge the gap between the format of the initial
design of business processes and the format of the languages, such as WS-
BPEL, that will execute these business processes. BPMN provides a mapping
from the visualization of the business processes (a notation) to the appropri-

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 45/67

ate execution format (a Business Process Management Execution Language)
for these business processes.

There are four basic categories of elements: Flow and Connecting objects,
Swimlanes and Artifacts.

Control-flow. BPMN has a small set (three) of core elements, which are
the Flow Objects.

• Flow Objects:

– Events: something that happens during the course of a business
process. There are three types of Events, based on when they
affect the flow:
∗ Start.
∗ Intermediate.
∗ End.

– Activities: the kind of work that company performs. An Activity
can be atomic or compound. The types of Activities are:
∗ Task.
∗ Sub-Process.

– Gateways: the control of the divergence and convergence of Se-
quence Flow. For instance, the forking, merging, and joining of
paths. Three possibilities are available:
∗ Exclusive Decision / Merge (XOR).
∗ Inclusive Decision (OR).
∗ Parallel Fork / Join (AND).

The Flow Objects are connected together in a diagram. There are three
Connecting Objects:

• Connecting Objects: connects the flow objects:

– Sequence Flow: the order that activities are performed within a
Process.

– Message Flow: the flow of messages (ingoing or outgoing) between
process participants.

– Association: the association of data, text, and other Artifacts with
flow objects data. An Association can also be used to show the
input and output of an activity.

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 46/67

Data-flow. BPMN provides a mechanism to organize activities into sepa-
rate visual categories in order to illustrate different functional capabilities or
responsibilities.

• Swimlanes:

– Pool: the involved persons of a business process.
– Lane: the organization and categorization of activities. It parti-

tions a Pool and assigns roles to activities.

• Artifacts: the possibility to add some contextual information into the
model/diagram:

– Data Objects: data needed by an activity. There is also the possi-
bility to notice the actual state of the object. They are connected
by an Association.

– Group: the grouping of objects of a process diagram with no im-
pact on the process flow. It can be used for documentation or
analysis purposes.

– Annotation: the possibility to add notes or comments to improve
the readability of a process diagram.

The basic structure of a Process is determined by the Activities, Gate-
ways, and Sequence Flow.

Evaluation. One could argue that besides this easy-to-use modeling no-
tation, there is a need to map the graphical notations into a language that
expresses a business process, such as BPEL for instance. We have seen
that it is an XML-based language for describing a business process. The
BPEL process itself could be represented as a Web Service, realized by a
BPEL engine executing the process description. BPMN as a standard set
of diagramming conventions, is designed to visualize a rich set of process
flow semantics within a process and the communication between indepen-
dent processes. Since BPEL is currently considered as the most impor-
tant standard for execution languages, a translation to BPEL is specified
in the BPMN standard. Some softwares such as Telelogic’s System Architect
(www.telelogic.com/popkin) generates BPEL code from BPMN diagrams but
it is restricted to a limited subset of BPMN. Intalio (www.italio.com) also
proposes to generate executable processes directly from a BPMN diagram.
As stated in [55], in BPEL, they miss to consider that business processes
generally have some form of human involvement. Some patterns are missing

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 47/67

such as “user task”, i.e. Role-Based Distribution, Authorization, Separation
of duties,..... which are supported in BPEL4People Creation Patterns. By
design there are some limitations on the process topologies (such as Ad-Hoc
sub-processes). As BPMN provides a much richer set of modeling constructs
[54], there are some BPMN processes that cannot be mapped to BPEL. For
example, BPEL misses support for a range of BPMN control flow patterns.

As we will also see in the following section, the OMG has scheduled the
adoption of BPMN 2.0, during the third quarter of 2008, with an improved
representation of choreography and support for displays tailored to different
aspects of modeling and analysis. There are may wishes expressed concerning
the BPMN 2.0 specifications, one would be to make the graphical process
modeling notation executable; a BPMN 2.0 diagram would specify exact
semantics and could be executed on a computer system. The mapping to
BPEL wouldn’t be needed anymore. We will see with the release of the
official specification whether these wishes would be adopted.

While defining the AVANTSSAR ISSL, we could take the advantages of
the flexibility and business-friendly notation of BPMN, extended to one or
several standard languages, to express processes with their related security
goals and requirements.

8.4 BPDM (Business Process Definition Metamodel)
On June 2005, the Business Process Management Initiative (BPMI) and the
Object Management Group (OMG) announced the merge of their Business
Process Management (BPM) activities. They still focus on Business Process
Management, such as refinement and promotion of BPMI’s Business Process
Modeling Notation (BPMN) as the basis for business modeling and delivery
of OMG’s Business Process Definition Metamodel (BPDM). They defined a
language, vocabulary, and rules. An OMG Adopted Beta Specification was
released on July 2007 [20].

What can be specified in BPDM. BPDM is a common model for de-
scribing all business processes, independently of notation or methodology.
BPDM defines a suite of model elements complete enough to represent both
intra- and interenterprise business processes in an human-reading way.

BPDM supports the specification of WS-Choreography. One of its objec-
tives is the unification of orchestration and choreography. For that purpose,
it should capture the ordering and conditions for the inputs and outputs
flows of a process. It should also share the same ordering elements between
choreographies and orchestrations.

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 48/67

BPDM recommends the use of BPMN as the standard notation for pro-
cesses. As we previously saw, the goal of BPMN is to be recognized as a
flexible and business-friendly notation for process orchestration, but some
robust foundations are still missing, such as:

• An explicit metamodel and vocabulary.

• A serialization mechanism.

• A rigorous execution semantic.

BPDM provides BPMN with an explicit metamodel that would unify the
various business process definition notations, a serialization mechanism for
BPMN concepts and a rigorous execution semantic.

By design, BPDM supports many process approaches and notations. For
instance, workflow and more general concepts of process, activities, tasks
and sub-processes that could be executed by a combination of human and
automated participants, conditional execution paths, parallel processes, pro-
cess flow and data flow, time-based events and conditions, transactions with
rollback, roles, responsibilities and collaborations.

Semantics of BPDM. Not only does BPDM provide a common basis for
all process oriented models but also integrates rules within processes. It of-
fers the capability to represent and model business processes independently
of notation or methodology, using a “meta model”. The meta model behind
BPDM uses the OMG “Meta Object Facility” (MOF) [44] standard to cap-
ture business processes in a very general way and to provide an XML syntax
for storing and transferring models between tools and infrastructures.

BPDM relies on formal methods to verify the precision of the seman-
tics and to ensure that the execution and communication of processes are
consistent.

Control-flow. In BPDM, the Process inputs and outputs are treated as
Messages. The messages are themselves “Steps” in a Process. They can be
ordered in time, conditioned, monitored.

To handle the communication between processes, BPDM tries to unify
orchestration and choreography using an interaction centric approach. It
distinguishes:

• Orchestration: the Execution of a process within an organization; that
is, within a pool, with an established sequence flow in a process man-
aged by an authority recognized by all participants. Orchestration

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 49/67

is represented through “Process”, which includes the traditional view
where sequences of “Activity” are carried out, with branching and syn-
chronization of different threads.

• Choreography: Collaboration across processes; that is, from one pool
to another (its peer), with communication via message-passing, and no
coordinating authority. The Interactions of collaborating entities are
often structured into ”Interaction Protocols” to represent the conver-
sation between the parties.

The “Common Behavior Model” allows orchestration and choreography
to be treated independently. It enables the sharing of common information
about business being modeled. The core elements of the Common Behavior
Model cover “Events”, “Interactions” and “Process Steps”. There are three
aspects of the Common Behavior Model which support the dependencies be-
tween “Activities” (in orchestration), between “Interactions” of participants
(in a choreography), and between the “Interaction” of an orchestrated Pro-
cess with its environment (a combination of both orchestration and choreog-
raphy).

• One aspect is an event-oriented view of processes called “Happening”.
It covers all the elements that involve time; either at a single point
or over an extended duration. For instance, a “Timer” 7 days has a
particular relationship with the race course Activity.

• The second aspect is “Processing Behavior”. It leverages Happenings
to represent sequences of generic Steps (applicable to both orchestra-
tion and choreography). For instance, the “Universal Behavioral Hap-
pening” represents the “Process Behavioral Change” (i.e., Start, Stop,
Abort, Error). It is the default type for all process Steps and choreog-
raphy Steps.

• The third aspect is “’Simple Interaction”. It addresses the definition
and reuse of protocols. It is applicable to both choreography, and to
the interaction of an orchestrated process with its environment.

Data-flow. BPDM provides a consistent approach for composing processes.
It includes an extensive “Composition Model” that defines a general concept
of relationship. The Composition Model defines a framework defining how
all the classes of the metamodel work together and how do they relate to
runtime execution. It provides the underlying principles and mechanisms for
reuse, (de)composition, interconnection, and instantiation. The Composition

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 50/67

Model also defines composition relationships between entities (e.g., how an
Activity is a part of a Process, how an “Interaction Flow” is part of an In-
teraction Protocol). It also describes the recursive structure of a Composite,
e.g. how a Process has “Typed Parts” that are Activities. Some of these
may in turn be “Sub-Processes”. It also defines relations between entities at
the same level of decomposition, e.g., that one Activity comes after another
under a certain Process, or that one participant interacts with another in an
Interaction Protocol.

An extension to the Composition Model yields the “Course Model”, which
connects elements in time and becomes the basis for representation of a
Process. The Course Model provides a very general coordination mechanism
of steps. It includes functionality that is the basis for Gateways in BPMN
(Splits and Joins), as well as Sequence Flows.

To handle the processing, BPDM embeds a Process as a grouping of ac-
tivities. A “Processor Role” represents the actors responsible for the Process.
It also considers the notion of “Performer Roles” as a partition of processing
responsibilities.

Evaluation. By concentrating on the metamodel separately from the mod-
eling language used to represent it, business modeling experts are able to in-
corporate the full range of business activities into a metamodel. But models
based on BPDM need to be parsed and mapped to a modeling language.

BPDM provides a robust serialization mechanism for the BPMN modeling
notation. BPMN 2.0, currently undergoing adoption at OMG, would produce
matched versions of BPMN and BPDM.

The support for both orchestration and choreography could be considered
for our AVANTSSAR language specification. BPDM facilitates the evolving
business boundaries as companies outsource, reorganize, merge and split their
operations. For instance, once the commitments of each role are defined (its
boundary conditions), it becomes possible to change the realization of the
process without changing the commitments.

BPDM is often compared to the existing process interchange format
XPDL. The two efforts are similar in that they could be used to exchange
business process definitions using XML.

8.5 WPDL (Workflow Process Definition Language),
XPDL (XML Process Definition Language)

XML Process Definition Language (XPDL) is standardized by the Workflow
Management Coalition (WfMC) since 2002. Formerly working on WPDL

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 51/67

(Workflow Process Definition Language), WfMC soon changed their language
name to XPDL when it was decided to use XML for its syntax. Current
version is XPDL 2.1 .

XPDL is designed to answer the Process Definition Interchange question,
which is, according to WfMC, one of the key features a workflow management
system must have. Since 2.0, XPDL is even explicitly designed to allow
store and exchange of BPMN diagrams. To quote WfMC: “XPDL is the
Serialization Format for BPMN”. This means there is a one to one matching
between a BPMN diagram and its XPDL translation. That includes the
graphical part of BPMN: the coordinates of the different elements, of the
lines linking those elements, all this is included in XPDL.

What can be specified in XPDL. Just like its counterpart BPMN 1.1,
XPDL is a process design format, as opposed to being a process execution
language like BPEL. And even if XPDL can sometimes run on workflow
engines, it is not its main purpose. In other words, what can be specified in
XPDL is strictly what can be specified in BPMN.

Semantics of XPDL, Control-flow and Data-flow. In regard to se-
mantics, what has been said for BPMN can be said for XPDL. With the
precision that XPDL language capabilities are defined in a XML schema.
This XPDL schema [59] defines classical workflow entities:

• process containers

• process activities

• message flows

• associations

• participants

• ...

And it also makes room, through extensible elements and attributes, for user
or vendor specific information. Thus, with XPDL, one can export and import
back and forth between workflow editors or workflow engines without losing
information (even product-specific).

Evaluation. We have seen that BPMN could be of interest to AVANTSSAR
ISSL. In that respect, XPDL, being the textual equivalent to the graphical
notations of BPMN, cannot be neglected.

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 52/67

8.6 PSL (Process Specification Language)
PSL is based on substantial research ranging from the situation calculus and
enterprise/manufacturing systems modeling. It has been applied in a wide
variety of areas such as scheduling, process modeling, planning, simulation,
and project management. PSL is project 18629 at the International Orga-
nization of Standardization, and part of the work is a Draft International
Standard. Given its generality and potentials for capturing many aspects of
WSs, it is difficult to make PSL fit precisely in the WSs computing stack
in Figure 1 of the deliverable. Certainly, it can be used to model aspects of
both single WSs and their composition.

PSL has a rigorously-developed semantics using first-order logic, and is
based on a three-step methodology: identifying intuitions, refining them in
mathematical structures, and then defining a logical language for the intu-
itions. First, intuitions about executing processes arising from applications
and existing languages have been overviewed so to serve as informal require-
ments. Second, each intuition has been mapped to an element of some alge-
braic structure such as graphs, linear orderings, partial orderings, groups, or
vector spaces. Another important part of the second step of the methodology
was the writing of axioms and definitions in first order logic to formalize the
original intuitions. The third and last step consisted in showing that the
structures were isomorphic to the (first-order) semantics of the predicates in
the logical language.

What can be specified in PSL. PSL has been designed to facilitate
correct and complete exchange of process information in a wide range of
application domains. This is so because of the growing use of information
technology in virtually any aspects of everyday life. In this context, the
interoperability of software applications has become increasingly important.
Initially, translation programs were written to enable communication from
one specific application to another. As the number of applications has in-
creased and the information has become more complex, it has become much
more difficult for software developers to provide translators between every
pair of applications that need to exchange information. Standards-based
translation mechanisms have simplified integration for some manufacturing
software developers by requiring only a single translator to be developed be-
tween their respective software product and the interchange standard. By
only developing this single translator, the application can inter-operate with
a wide variety of other applications that have a similar translator between
that standard and their application. In this respect, PSL can be seen as a
neutral, standard language for process specification to serve as an interlingua

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 53/67

to integrate multiple process-related applications. This interchange language
is unique due to a formal semantic (the ontology) that underlie the language.
Because of these explicit and unambiguous definitions, information exchange
can be achieved without relying on hidden assumptions or subjective map-
pings.

Semantics of PSL. The basic concepts of PSL serve to disambiguate many
kinds of behavior models for process execution. An activity is a reusable
behavior and an occurrence is a run-time execution of an activity. These and
any other concept in PSL are formalized by predicates of first-order logic.
Any concrete first-order language can be used for this purpose although it
is customarily used the Knowledge Interchange Format (KIF). By using the
SUBACTIVITY relation, it is possible to specify that the execution of a PSL
activity may involve the execution of another.

Control-flow. The SUCCESSOR relation associates occurrences with each
other to represent all temporal orderings of run-time execution of activi-
ties whether they conform to a behavior specification or not. An oriented
tree representation of the SUCCESSOR relation is possible, where nodes
are occurrences, edges represent the pairs in the relation, and branches pos-
sible execution trances. A behavior specification identifies those parts of
the occurrence tree conforming to a certain behavior and it is expressed as
first-order constraints on run-time execution using the predicates defined by
PSL, usually by means of KIF. PSL supports several forms of constraints
on sequences of activity and sub-activity executions by means of relations
such as NEXT_SUBOCC to specify the order for sub-activity occurrences
of a complex activity, MIN_PRECEDES which is the transitive closure of
NEXT_SUBOCC, and ROOT_OCC and LEAF_OCC to indicate which
sub-activity occurrences are at the beginning and end of a complex occur-
rence.

All flow languages support flows that split and come together. To support
flow choices, PSL has constructs for representing aspects of the state of the
world before and after each activity execution in the occurrence tree. The
PSL representation of decisions uses states to express which branches of the
occurrence tree are allowed under the specification. The relation HOLDS
tells what states of the world is the case after a specific activity execution,
i.e. at one point in the occurrence tree. Combining the relation HOLDS with
(first-order) disjunction (so to require all combinations of run-time execution
order as possibilities), it is easy to specify multiple concurrent flows.

PSL features constraints on how much time can elapse between execution

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 54/67

of activities. It has functions for begin and end time behavior of executions
which can be combined with first-order predicates to mandate durations of
activities.

Data-flow. One of the main goals of the design of PSL was to allow for
interoperability of heterogeneous applications. In this respect, one of the cru-
cial issues is to obtain a meaningful exchange of information between applica-
tions as, e.g., different types of applications may associate different meanings
with similar or identical terms. To address this point, PSL proposes a formal
semantic layer (an ontology) based on KIF, a formal language developed for
the exchange of knowledge among disparate computer programs. For exam-
ple, PSL was successfully used to integrate several manufacturing process
applications by using the ontology to define explicitly and unambiguously
the concepts intrinsic to manufacturing systems.

In PSL, an ontology is a set of sentence in first-order logic comprising a set
of foundational theories and definitions. Hence, a language, a model theory,
and a proof theory are defined. The language provides the terminology to
talk about activities and their flow; the model theory provides for a rigorous
mathematical characterization of the semantics of the terminology; and the
proof theory provides axioms for the interpretation of terms in the ontology.
Indeed, the challenge is to make explicit the meaning of the terminology for
the ontologies that are in people’s head as any implicit idea is a possible
source of ambiguity.

The axioms and definitions in the PSL ontology are organized in a seman-
tics architecture encompassing a set of core axioms (called the PSL-Core),
the core theories, and extensions.

The PSL-Core gives the semantics of the primitives in the PSL ontology
corresponding to the fundamental intuitions about activities. It introduces
activities, their crucial events for timing (e.g., the beginning or end of an
activity), and their temporal relationships (e.g., before or after). The basic
notions of the PSL-Core are axiomatized formally as a first-order theory
whose axioms capture the basic properties of the PSL ontology.

The terms that have definitions can be grouped into modules, each of
which is an extension of PSL-Core. The set of extensions of PSL can be clas-
sified in three categories: generic activities and ordering relations (partially
ordered activities, non-deterministic activities, complex sequence ordering
relations, and junctions), process planning (resource roles, processor actions,
resource paths), resources and schedules (durations, activities, temporal or-
dering relations, reasoning about state, interval activities).

In addition to PSL-Core and its extensions, other sets of axioms may

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 55/67

be required to introduce new primitive concepts; these axioms are grouped
into core theories. One of the most important such core theories in PSL is
situation calculus. This is powerful enough to prove theorems about PSL-
Core and its extensions, such as theorems to characterize the completeness of
the set of resource roles, and similar theorems to characterize the structure
of partially ordered actions. It is also strong enough for building formal
semantic models and proving the soundness of proposed semantic translation
schemes.

Evaluation. While PSL may seem too complex and general purpose a
language for the description of the behavior of the processes and transactions
taking place in the realm of WSs, the key idea of using first-order logic as its
semantic foundation is particularly appealing for AVANTSSAR. In fact, using
some logical formalisms (and, in particular, first-order logic) to build the
semantics would facilitate not only the writings of properties systems should
satisfy but also the development of the techniques to analyze specifications by
using automated reasoning techniques, which is one of the main objectives
of AVANTSSAR. On a more concrete level, some of the notions used in
PSL to formalize the behavior of processes may be directly used or suitably
specialized to the case of WSs.

8.7 YAWL (Yet Another Workflow Language)
YAWL (Yet Another Workflow Language) [34] is, as the name says, (another)
workflow language. Its development started in 2002 and is still evolving
thanks to an open source community leaded by Eindhoven University of
Technology and Queensland University of Technology. YAWL is not (yet)
supported by any standardization committee.

YAWL project originated as the natural complement to Workflow Pat-
terns [67] project. Workflow Patterns is an initiative started in 1999, also
from Eindhoven University of Technology and Queensland University of Tech-
nology, trying to list all recurrent problems and proved solutions (i.e. pat-
terns) related to the development of workflow applications. In that respect,
they evaluate workflow-related products and standards, judging which of the
patterns they support, and to what extent. Seeing that no product or stan-
dard could answer all workflow patterns, they decided to create it: YAWL.

Workflow Patterns are divided into categories. These are control-flow
patterns, resource patterns, data patterns and exception handling patterns,
currently adding up to more than 200 total patterns:

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 56/67

• Control-flow patterns aim at covering all process control aspects of a
workflow. They range from, for instance, sequence pattern (where “A
task in a process is enabled after the completion of a preceding task in
the same process.”) to all kinds of iteration or advanced branching.

• Resource patterns deal with the entities capable of doing work. That
includes authorization pattern for instance (“the ability to specify the
range of privileges that a resource possesses in regard to the execution
of a process”).

• Data patterns are focusing on the various ways a system can handle
data. Whether it supports different scopes for data, whether modi-
fications can be applied to the data before being passed to the next
activity, etc.

• Exception handling patterns deal with the various exception cases and
their handling.

YAWL is primarily a workflow language, but has also an execution engine,
a graphical editor and an analysis and verification tool. The editor handles
.ywl (binary) files for graphical representation and can also produce .xml files
with only WF process data. The .xml files are used in the execution engine.

What can be specified in YAWL. Basically all identified workflow pat-
terns can be specified in YAWL. To this day, YAWL can noticeably deal
with:

• synchronizations

• choices

• multiple instances

• exception handling

• resource allocation policies (role-based or direct)

• etc

Semantics of YAWL. Initially built on top of Petri Nets, YAWL has
evolved to support patterns that could not be easily (or not at all) handled
with Petri Nets. YAWL grammar involves tasks (’atomic’, ’composite’ or
’multiple instance’) and join/split connexions between tasks:

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 57/67

Control-flow. All tasks are related to their predecessor(s) with a join con-
dition and to their successor(s) with a split condition. That gives:

• simple split: the task is followed by one, only one and always the same
other task

• AND split: activates all outgoing links from this task upon completion

• OR split: activates a number of outgoing links from this task upon
completion

• XOR split: activates one outgoing link from this task upon completion

• simple join: the task follows one, only one and always the same other
task

• AND join: activates this task when all incoming links have been acti-
vated

• OR join: activates this task when one or more incoming links are ac-
tivated and there is no possibility for other links to be activated if the
task continues to wait

• XOR join: activates this task each time an incoming link has been
activated

YAWL also defines a ’Cancellation region’ item, where all elements within a
dotted region are deactivated upon task activation. Workflow designers can
thus specify cancellation of single tasks up to whole processes.

Data-flow. YAWL uses XML Schema, XPath and XQuery for data defini-
tion and manipulation:

• It provides a set of idiomatic primitive data types and the ability to
define user defined data types (XML Schema)

• It supports variables, input/output parameters, and run-time variable
transformations (XPath and XQuery)

Evaluation. While not being standardized, YAWL looks like the most
complete workflow language to date. The AVANTSSAR language should,
if not altogether based on YAWL, at least keep an eye on its own coverage
of the various workflow patterns.

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 58/67

9 Choreography Layer
Choreography vs. Orchestration. Previously in this deliverable, we
have already discussed orchestration in relation with the Business Process
Layer section 8 and BPDM subsection 8.4. The difference to choreography
can be illustrated by the origin of the metaphor in the fine arts, namely that
a choreography is a plan that every actor follows by, while orchestration is
controlled by a conductor.

While orchestration is defined from the point of view of a particular role or
process, choreography describes the observable behavior of an entire system
from a global point of view, without emphasis on any role. This holds both
for the types of exchanged messages and for the control and data flow.

The goal behind choreography is, according to the W3C working group
charter, that a choreography defines a kind of contract between the services
based on the externally visible behavior. Also, it is intended to generate code
skeletons for web services and BPEL process from a choreography.

While orchestration languages are closer to executable processes, whereas
choreography languages describe—in a top-down fashion—constraints of the
system from which we cannot necessarily infer an implementation. However,
this distinction between choreography and orchestration is blurred with the
evolution of specification languages.

9.1 WSCI (Web Services Choreography Interface)
The Web Service Choreography Interface (WSCI) was proposed in 2002 by
BEA Systems, Intalio, SAP, and Sun and has the status of a note of the W3C
since then [60]. Apparently, it never made it to a recommendation so far.

WSCI works in conjunction with WSDL so that one can dynamically find
web services and use them in one’s business processes—which requires a def-
inition of the possible collaboration and interaction of partners. A WSDL
description provides basically static information about a service; WSCI com-
plements the static interface details provided by the WSDL file by describing
the choreography of operations. Thus, WSCI describes the observable flow of
messages of (stateful) web services. The goal is to enable users to understand
how to interact with a service in a meaningful way.

More in detail, the additional informations about the dynamic behavior of
web services that a WSCI can provide and that are not covered by a WSDL
description are the following.

• Sequence of messages and processes, e.g. the operation of placing an
order must occur before the actual payment operation is performed.

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 59/67

• Correlation of messages, e.g. correlating a reply (and subsequent com-
munication) to a request using an order-ID.

• Workunits: what triggers a message exchange/process, when is it fin-
ished? This includes also the ability to either execute the entire unit
or restore a consistent state prior to execution (compensation).

• Handling of exceptions like a time-out. WSCI also supports catching
exceptions, allowing for recoverable operations.

• Defining Contexts in which variables are shared or to which exceptions
are related.

There are basic activities like request and response messages or invocation of
external services, and structured activities like sequential and parallel pro-
cessing.

Every party describes, in an own choreography document, its role and se-
quence of messages subjectively. Thus, a WSCI choreography consists of a set
of WSCI documents, one for each participant. On top of this, WSCI allows
for the global composition of several interfaces, e.g. composing a booking ser-
vice with an airline service. This is based on the WSDL port type features,
describing sequential and logical dependencies between observable message
exchanges. One may thus also understand WSCI as another layer on top of
the web services stack as done in [51]: the WSCI description maps work-units
of every participant down to WSDL operations. Other features include se-
lectors to abstract from concrete message format, calling subroutines, several
control elements for activities such as loops, switches, etc., and constructs
for timing.

Semantics and Tools. There have been several approaches to formalize
the semantics of WSCI. The difficulty lies—as also for other choreography
languages—in the fact that the descriptions are usually far from executable.
[69] describes an approach based on hierarchical colored Petri nets. [10] for-
malize WSCI in CCS and check deadlock-freeness and compatibility of web
services, i.e. whether they are able to interoperate. They also consider auto-
matic generation of adaptors for the case that interoperation is not directly
possible.

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 60/67

9.2 WS-CDL (Web Services Choreography Descrip-
tion Language)

The Web Services Choreography Description Language (WS-CDL) is a W3C
candidate recommendation since 2005 [61]. Many concepts are similar to
WSCI, and, once more, the philosophy of WS-CDL is not the definition of
an executable description or a new web-service, but to describe the common
collaborative observable behavior of a system in terms of abstract business
processes. This may also be regarded as a protocol between autonomous
parties without a central point of control. When a service does show a
behavior violating these constraints, this is considered as an error in the
sense that it is not conformant with its WS-CDL description.

WS-CDL is related to formal methods, in particular π-calculus by which
some concepts have been inspired. However, the designers have not defined
a formal semantics so far and many questions remain open, in particular the
mapping of constructs to lower levels of the stack, in particular the link to
WSDL and BPEL descriptions [6].

A WS-CDL description consists of a static and dynamic part. The static
part describes the communicating entities and their communication medium:

• All interactions are between roles.

• The declaration of participants partitions the set of roles. A participant
is a set of roles that will be played by the same physical entity and thus
defines the scope over which variables may be shared between roles.

• A channel is always between two roles (i.e. no multi-cast), where in-
teraction is divided into two phases, request and response. Related to
that, one can define aliases to parts of messages in order to abstract
from the concrete XML-presentation of messages.

The dynamic part describes the observable behavior in terms of a chore-
ography (and possibly subchoreographies) consisting of the following three
types of activities:

• Basic Activities are interactions, i.e. request, response, and request-
respond exchanges, invoking a sub-activity, and assigning new values
to variables.

• Workunits define conditional and repeated execution of activities.

• Structural Activities define sequential and parallel execution of activi-
ties, as well as form of (external) choice.

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 61/67

Besides that, the dynamic part may also contain blocks for exceptions and
finalization of activities.

Semantics and Tools. As it is the case for WSCI, the tool support for
WS-CDL is currently limited. Since descriptions are lengthy and hardly
human-readable, this is a particular disadvantage. There is an Eclipse plug-
in pi4soa [64] which provides a basic support with a graphical editor for
WS-CDL choreographies and the generation of BPEL specifications. [42] dis-
cusses more generally the generation of BPEL choreographies from WS-CDL
choreographies.

As said before, WS-CDL is, at least partially, related to process calculi
and a semantics may be defined in these terms, although this has not been
done in the official documents and the large parts of the semantics remain
unclear. [68, 70] formalize simplified versions of WS-CDL, describing the roles
from a local view-point, introducing the concept of a dominant role. They use
the SPIN model-checker to check CDL specifications for properties like dead-
lock freeness. [35] directly interprets WS-CDL as a transition system where
the state is essentially a stack of currently executing (sub-)choreographies.

9.3 Evaluation
With respect to orchestration languages, choreography languages focus on
the global view of a system and are more abstract. There are thus several
questions that can be interesting from formal methods point of view, e.g.
considering choreography as a layer on the WS-stack. However, these issues
appear to be mainly interesting from a theoretical point of view, for most
practical problems BPEL/orchestration languages appear sufficient. Also,
a major weakness of WSCI and WS-CDL is that the integration of web
services into business process execution cannot be modeled in full detail [11].
So at least for the design of an industrially suited specification language,
choreography issues should not be a top priority. For foundational research on
composition, choreography however may still be interesting, at least raising
important questions.

FP7-ICT-2007-1
Project No. 216471

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 62/67

References
[1] A. Agrawal et al. Web Services Human Task (WS-HumanTask), Ver-

sion 1.0. http://download.boulder.ibm.com/ibmdl/pub/software/
dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf, June 2007.

[2] A. Agrawal et al. WS-BPEL Extension for People (BPEL4PEOPLE),
Version 1.0. http://download.boulder.ibm.com/ibmdl/pub/
software/dw/specs/ws-bpel4people/BPEL4People_v1.pdf, June
2007.

[3] Martín Abadi. Logic in access control. In LICS, pages 228–. IEEE
Computer Society, 2003.

[4] Martin Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin.
A calculus for access control in distributed systems. ACM Transactions
on Programming Languages and Systems, 15(4):706–734, 1993.

[5] Keith Ballinger, Don Box, Francisco Curbera, Srinivas Davanum, Don
Ferguson, Steve Graham, Canyang K. Liu, Frank Leymann, Brad Lover-
ing, Anthony Nadalin, Mark Nottingham, David Orchard, Claus von
Riegen, Jeffery Schlimmer, Igor Sedukhin, John Shewchuk, Bill Smith,
Greg Truty, Sanjiva Weerawarana, and Prasad Yendluri. Web services
metadata exchange (ws-metadataexchange). http://msdn.microsoft.
com/ws/2004/09/ws-metadataexchange/, 2004.

[6] A. Barros, M. Dumas, and P Oaks. A Critical Overview of the Web
Service Choreography Description Language. BPTrends Newsletter, 3,
2005.

[7] Lujo Bauer, Scott Garriss, and Michael K. Reiter. Distributed proving
in access-control systems. In IEEE Symposium on Security and Privacy,
pages 81–95, 2005.

[8] Lujo Bauer, Scott Garriss, and Michael K. Reiter. Efficient proving for
practical distributed access-control systems. In ESORICS, pages 19–37,
2007.

[9] C. Braghin, D. Gorla, and V. Sassone. A distributed calculus for role-
based access control. In Proceedings of 17th IEEE Computer Security
Foundations Workshop, CSFW’04, pages 48–60. IEEE Press, 2004.

[10] Antonio Brogi, Carlos Canal, Ernesto Pimentel, and Antonio Vallecillo.
Formalizing Web Service Choreographies. ENTCS, 105:73–94, 2004.

FP7-ICT-2007-1
Project No. 216471

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/BPEL4People_v1.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/BPEL4People_v1.pdf
http://msdn.microsoft.com/ws/2004/09/ws-metadataexchange/
http://msdn.microsoft.com/ws/2004/09/ws-metadataexchange/

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 63/67

[11] A. Bucchiarone and S. Gnesi. A Survey on Service Composition Lan-
guages and Models. In WsMaTe, 2006.

[12] Windows Communication Foundation. WCF. http://msdn2.
microsoft.com/en-us/netframework/aa663324.aspx.

[13] Oasis Consortium. Universal Description, Discovery, and Integration
specification. http://uddi.org/pubs/uddi-v3.0.2-20041019.pdf.

[14] OASIS Consortium. eXtensible Access Control Markup Language
(xacml) version 2.0, oasis standard. http://docs.oasis-open.org/
xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf, 2005.

[15] OASIS Consortium. Oasis: Reference model for Service Oriented Ar-
chitecture 1.0. http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.
html, 2006.

[16] OASIS Consortium. Web Services Federation Language (WS-
Federation) V1.1, December 2006.

[17] OASIS Consortium. Security Assertion Markup Language V2.0
Technical Overview. http://wiki.oasis-open.org/security/
Saml2TechOverview, March 2008.

[18] OASIS Consortium. Web Services Reliable Messaging (WS-
ReliableMessaging) V1.2. http://docs.oasis-open.org/ws-rx/
wsrm/200702, February 2008.

[19] OMG Consortium. Business Process Modeling Notation (BPMN).
http://www.bpmn.organdhttp://www.omg.org/spec/BPMN/1.1/PDF,
2008.

[20] OMG Consortium. Business Process Definition Metamodel. http://
www.omg.org/spec/BPDM/1.0/Beta1/, July 2007.

[21] The World Wide Web Consortium. The world wide web consortium.
http://www.w3.org.

[22] The World Wide Web Consortium. Web Services Description
Language (WSDL) version 2.0. http://www.w3.org/TR/2006/
WD-wsdl20-rdf-20060327/, 2006.

[23] The World Wide Web Consortium. Simple Object Access Protocol 1.2.
http://www.w3.org/TR/soap12-part1, Apr 2007.

FP7-ICT-2007-1
Project No. 216471

http://msdn2.microsoft.com/en-us/netframework/aa663324.aspx
http://msdn2.microsoft.com/en-us/netframework/aa663324.aspx
http://uddi.org/pubs/uddi-v3.0.2-20041019.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html
http://wiki.oasis-open.org/security/Saml2TechOverview
http://wiki.oasis-open.org/security/Saml2TechOverview
http://docs.oasis-open.org/ws-rx/wsrm/200702
http://docs.oasis-open.org/ws-rx/wsrm/200702
http://www.bpmn.org and http://www.omg.org/spec/BPMN/1.1/PDF
http://www.omg.org/spec/BPDM/1.0/Beta1/
http://www.omg.org/spec/BPDM/1.0/Beta1/
http://www.w3.org
http://www.w3.org/TR/2006/WD-wsdl20-rdf-20060327/
http://www.w3.org/TR/2006/WD-wsdl20-rdf-20060327/
http://www.w3.org/TR/soap12-part1

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 64/67

[24] The World Wide Web Consortium. Web Services Description Working
Group. http://www.w3.org/2002/ws/desc/, June 07.

[25] The World Wide Web Consortium. Web Services Choreography De-
scription Language version 1.0. http://www.w3.org/TR/ws-cdl-10/,
Nov 2005.

[26] Common Object Request Broker Architecture (CORBA). http://www.
corba.org/, 1992.

[27] Microsoft Corporation and Digital Equipment Corporation. Component
Object Model Technologies (COM). http://www.microsoft.com/com/
default.mspx.

[28] Jason Crampton, George Loizou, and Greg O’Shea. A logic of access
control. Comput. J., 44(1):54–66, 2001.

[29] Remco M. Dĳkman, Marlon Dumas, and Chun Ouyang. Formal seman-
tics and analysis of bpmn process models. Technical report, Queens-
land University of Technology, 2007. http://eprints.qut.edu.au/
archive/00007115/01/7115.pdf.

[30] D. Ferraiolo and R. Kuhn. Role-based access controls. In 15th NIST-
NCSC National Computer Security Conference, pages 554–563, 1992.
http://citeseer.ist.psu.edu/ferraiolo92rolebased.html.

[31] David F. Ferraiolo, John F. Barkley, and D. Richard Kuhn. A role-
based access control model and reference implementation within a cor-
porate intranet. ACM Transactions on Information and System Se-
curity (TISSEC), 2(1):34–64, February 1999. http://www.acm.org:
80/pubs/citations/journals/tissec/1999-2-1/p34-ferraiolo/.

[32] Roy T. Fielding. Architectural Styles and the Design of Network-based
Software Architectures, 2000.

[33] The Center for XML and Web Services Technologies. the web
services protocol universe. http://www.qcc.cuny.edu/xmlcenter/
protocolstack.htm.

[34] The YAWL Foundation. YAWL. http://www.yawl-system.com.

[35] Lars-Åke Fredlund. Implementing WS-CDL. In proceedings of JSWEB
2006, 2006.

FP7-ICT-2007-1
Project No. 216471

http://www.w3.org/2002/ws/desc/
http://www.w3.org/TR/ws-cdl-10/
http://www.corba.org/
http://www.corba.org/
http://www.microsoft.com/com/default.mspx
http://www.microsoft.com/com/default.mspx
http://eprints.qut.edu.au/archive/00007115/01/7115.pdf
http://eprints.qut.edu.au/archive/00007115/01/7115.pdf
http://citeseer.ist.psu.edu/ferraiolo92rolebased.html
http://www.acm.org:80/pubs/citations/journals/tissec/1999-2-1/p34-ferraiolo/
http://www.acm.org:80/pubs/citations/journals/tissec/1999-2-1/p34-ferraiolo/
http://www.qcc.cuny.edu/xmlcenter/protocolstack.htm
http://www.qcc.cuny.edu/xmlcenter/protocolstack.htm
http://www.yawl-system.com

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 65/67

[36] Deepak Garg and Martín Abadi. A modal deconstruction of access
control logics. In Roberto M. Amadio, editor, FoSSaCS, volume 4962 of
Lecture Notes in Computer Science, pages 216–230. Springer, 2008.

[37] J. Gray. The transaction concept: Virtues and limitations, September
1981.

[38] Michael Havey, August 2005.

[39] Polar Humenn. The Formal Semantics of XACML. http://lists.
oasis-open.org/archives/xacml/200310/pdf00000.pdf.

[40] IBM and Microsoft Corporation. Understanding WS-Federation. http:
//msdn.microsoft.com/en-us/library/bb498017.aspx, May 2007.

[41] Harold Lockhart. Demistifying SAML. http://dev2dev.bea.com/pub/
a/2005/11/saml.html, September 2005.

[42] J. Mendling and M. Hafner. From Inter-Organizational Workflows to
Process Execution: Generating BPEL from WS-CDL. In MIOS work-
shop, OTM 2005 Workshops, LNCS 3762. Springer, 2005.

[43] L. Bastida Merino and G. Benguria Elguezabal. Business Process Defi-
nition Languages versus Traditional Methods Towards Interoperability,
Jan 2005.

[44] Meta-Object Facility. MOF. http://www.omg.org/mof/.

[45] Microsoft and All. Web services dynamic discovery (WS-Discovery.
http://specs.xmlsoap.org/ws/2005/04/discovery/, April 2005.

[46] Oasis Consortium. Web Services Business Process Execution Lan-
guage Version 2.0. http://docs.oasis-open.org/wsbpel/2.0/OS/
wsbpel-v2.0-OS.pdf, 11 April, 2007.

[47] OASIS Web Services Reliable Messaging TC. WS-Reliability 1.1.
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/
wsrm-ws_reliability-1.1-spec-os.pdf, November 2004.

[48] The Object Management Group. OMG. http://www.omg.org.

[49] Chun Ouyang, Eric Verbeek, Wil M. P. van der Aalst, Stephan Breutel,
Marlon Dumas, and Arthur H. M. ter Hofstede. Formal semantics and
analysis of control flow in WS-BPEL. Sci. Comput. Program., 67(2-
3):162–198, 2007.

FP7-ICT-2007-1
Project No. 216471

http://lists.oasis-open.org/archives/xacml/200310/pdf00000.pdf
http://lists.oasis-open.org/archives/xacml/200310/pdf00000.pdf
http://msdn.microsoft.com/en-us/library/bb498017.aspx
http://msdn.microsoft.com/en-us/library/bb498017.aspx
http://dev2dev.bea.com/pub/a/2005/11/saml.html
http://dev2dev.bea.com/pub/a/2005/11/saml.html
http://www.omg.org/mof/
http://specs. xmlsoap.org/ws/2005/04/discovery/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf
http://www.omg.org

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 66/67

[50] N. Goodman P.A. Bernstein, V. Hadzilacos. Concurrency control and
recovery in database systems, 1987.

[51] Chris Peltz. Web Services Orchestration, 2003. HP white paper.

[52] D. J. Power, M. A. Slaymaker, and A. C. Simpson. On formalising and
normalising role-based access control systems. Accepted for publication
in The Computer Journal, 2007.

[53] Business Process Modeling Initiative. BPMI. http://www.bpmi.org,
2000.

[54] Jan Recker and Jan Mendling. On the translation between BPMN
and BPEL: Conceptual mismatch between process modeling languages.
citeseer.ist.psu.edu/recker06translation.html, Jan 2006.

[55] Nick Russell and Wil M.P. van der Aalst. Evaluation of the bpel4people
and ws-humantask extensions to ws-bpel 2.0 using the workflow resource
patterns, 2007.

[56] Frank Siebenlist. Modeling delegation of rights in a simplified xacml
with haskell. http://www-unix.mcs.anl.gov/~franks/haskell/
XacmlDelegationHaskell0.html.

[57] Simple Object Access Protocol v1.2. http://www.w3.org/TR/2003/
REC-soap12-part0-20030624/, 2003.

[58] Joint specification by IBM, Microsoft, and BEA. Web services transac-
tions specifications. http://www.ibm.com/developerworks/library/
ws-transpec/, August 2002.

[59] the Workflow Management Coalition. XPDL Schema. http://
www.wfmc.org/standards/docs/TC-1025_bpmnxpdl_24.xsd, October
2005.

[60] The World Wide Web Consortium. Web Service Choreography Interface,
2002. Version 1.0, http://www.w3.org/TR/wsci/.

[61] The World Wide Web Consortium. Web Services Choreography De-
scription Language, 2005. Version 1.0, Candidate Recommendation,
http://www.w3.org/TR/ws-cdl-10/.

[62] The World Wide Web Consortium. XML Schema Definition (XSD).
http://www.w3.org/XML/Schema, March 2005.

FP7-ICT-2007-1
Project No. 216471

http://www.bpmi.org
citeseer.ist.psu.edu/recker06translation.html
http://www-unix.mcs.anl.gov/~franks/haskell/XacmlDelegationHaskell0.html
http://www-unix.mcs.anl.gov/~franks/haskell/XacmlDelegationHaskell0.html
http://www.w3.org/TR/2003/REC-soap12-part0-20030624/
http://www.w3.org/TR/2003/REC-soap12-part0-20030624/
http://www.ibm.com/developerworks/library/ws-transpec/
http://www.ibm.com/developerworks/library/ws-transpec/
http://www.wfmc.org/standards/docs/TC-1025_bpmnxpdl_24.xsd
http://www.wfmc.org/standards/docs/TC-1025_bpmnxpdl_24.xsd
http://www.w3.org/TR/wsci/
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/XML/Schema

D6.2.1: State-of-the-Art on Specification Languages for Service-Oriented
Architectures 67/67

[63] UDDI. Introduction to UDDI: Important Features and Functional Con-
cepts. http://uddi.org/pubs/uddi-tech-wp.pdf, 2004.

[64] pi4soa. http://www.pi4.org/.

[65] J.E. White. RPC definition in the RFC707. http://tools.ietf.org/
html/rfc707, 1975.

[66] Dave Winner. XML-RPC specifications. http://www.xmlrpc.com/
spec, 1999.

[67] The Workflow Patterns initiative. Workflow Patterns. http://www.
workflowpatterns.com.

[68] Zhao Xiangpeng, Yang Hongli, and Qiu Zongyan. Towards the Formal
Model and Verification of Web Service Choreography Description Lan-
guage. In Web Services and Formal Methods, LNCS 4184. Springer,
2006.

[69] YanPing Yang, QingPing Tan, and Yong Xiao. Verifying Web Services
Composition Based on Hierarchical Colored Petri Nets. In Workshop on
Interoperability of heterogeneous information systems. ACM, 2005.

[70] Qiu Zongyan, Zhao Xiangpeng, Cai Chao, and Yang Hongli. Towards
the Theoretical Foundation of Choreography. In International World
Wide Web Conference. ACM, 2007.

FP7-ICT-2007-1
Project No. 216471

http://uddi.org/pubs/uddi-tech-wp.pdf
http://www.pi4.org/
http://tools.ietf.org/html/rfc707
http://tools.ietf.org/html/rfc707
http://www.xmlrpc.com/spec
http://www.xmlrpc.com/spec
http://www.workflowpatterns.com
http://www.workflowpatterns.com

	Introduction
	History and context of Services
	History of Services and Remote Procedure Calls (RPC, DCOM, CORBA)
	 Basic terms and concepts
	 Document Structure

	Transport and Messaging Layer
	TCP, UDP / HTTP, SMTP
	REST (Representational State Transfer)
	XML-RPC
	SOAP (Simple Object Access Protocol)

	Web Service Description Language (WSDL)
	Reliable Messaging and Security Layer
	WS-Security
	WS-Trust
	WS-SecureConversation
	WS-Policy
	WS-SecurityPolicy
	XACML
	WS-Federation
	SAML
	WS-Reliability
	WS-ReliableMessaging
	WS-MetadataExchange

	Context, Coordination and Transaction-related Protocols
	WS-Coordination
	WS-AtomicTransaction
	WS-BusinessActivity
	Evaluation

	Registry (publishing /discovery)
	UDDI (Universal Description Discovery and Integration)
	WS-Discovery

	 Business Process Language Layer
	WSFL (Web Services Flow Language)
	WS-BPEL, WS-HumanTask and BPEL4People
	BPMN (Business Process Modeling Notation)
	BPDM (Business Process Definition Metamodel)
	WPDL (Workflow Process Definition Language), XPDL (XML Process Definition Language)
	PSL (Process Specification Language)
	YAWL (Yet Another Workflow Language)

	Choreography Layer
	WSCI (Web Services Choreography Interface)
	WS-CDL (Web Services Choreography Description Language)
	Evaluation

