
Automated VAlidatioN of Trust and Security
of Service-oriented ARchitectures

FP7-ICT-2007-1, Project No. 216471

www.avantssar.eu

Deliverable D3.4
Abstraction and Compositional Reasoning

Techniques for Service Analysis
Abstract

We present a number of abstraction techniques for the validation of trust and
security properties of services. Abstraction consists in transforming a concrete
model to be analyzed into a abstract model more amenable to analysis. The
transformation must be sound w.r.t. a class of properties, i.e. a property
proved on the abstract model must also hold in the concrete one. This implies
that the original model must be over-approximated, i.e. every reachable state
or trace of the concrete system has a counterpart (modulo an abstraction
relation) in the abstract system. Thus, in the worst case, a concrete system
may be secure, while we are not able to prove this using its abstraction.

Deliverable details
Deliverable version: v1.0 Classification: public
Date of delivery: 31.10.2010 Due on: 31.10.2010
Editors: UNIVR, ETH Zurich, INRIA, UPS-IRIT, IBM (principal editors).
UGDIST, OpenTrust, IEAT, SAP, SIEMENS (secondary editors) Total
pages: 94

Project details
Start date: January 01, 2008 Duration: 36 months
Project Coordinator: Luca Viganò
Partners: UNIVR, ETH Zurich, INRIA, UPS-IRIT, UGDIST, IBM,

OpenTrust, IEAT, SAP, SIEMENS

http://www.avantssar.eu
www.avantssar.eu

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 2/94

Contents
1 Introduction 6

2 Set-Based Abstraction 9
2.1 AIF and the Concrete Model 11

2.1.1 A Running Example 11
2.1.2 Formal Definition of AIF 12
2.1.3 Syntactic Sugar . 15
2.1.4 Inconsistent Rules . 16

2.2 Set-Based Abstraction . 16
2.2.1 Definition of the Abstraction 17
2.2.2 Term Implication Rules 17
2.2.3 Translation to Abstract Rules 18
2.2.4 The Example . 19

2.3 Soundness . 20
2.4 Encoding Term Implication 24
2.5 Decidability . 25
2.6 Experimental Results . 27
2.7 Concluding Remarks . 30

3 Encoding security-policy clauses 32
3.1 Preliminaries . 33
3.2 Policy engines and message terms 33
3.3 Encoding policy level computations 37

3.3.1 TA only. 37
3.3.2 TA, TD and type-1 theories 38
3.3.3 Correctness of the encoding 39

4 One-step Transition Decision Procedures 42
4.1 Logical background . 42
4.2 Logical model of ASLan . 43

4.2.1 States and transitions in ASLan 43
4.2.2 ASLan specifications 44
4.2.3 ASLan goals . 45

4.3 Relevant specifications . 45
4.3.1 Web services and aspect-based programming 45
4.3.2 Separation of the different aspects 46
4.3.3 Web Service specifications (WS specifications) 48

4.4 Reachability problems . 49
4.4.1 Definition . 49

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 3/94

4.4.2 Reachability problems for WS-specifications 50
4.4.3 The case of ground reachability problems 51

5 Process equivalence 53
5.1 Introduction . 53
5.2 Definitions . 56

5.2.1 Terms . 56
5.2.2 Subterm Deduction Systems 57

5.3 Symbolic Derivations . 59
5.3.1 Definitions . 59
5.3.2 Solutions of symbolic derivations 65
5.3.3 Relation with static equivalence 67

5.4 The case of a subterm deduction system 70
5.4.1 (De)composition rules and stutter free derivations . . . 71
5.4.2 Reduction of C?h ⊆ C ′h

? to Csf+
h ⊆ C ′h

? 74
5.4.3 Reduction of Csf+

h ⊆ C ′h
? to Sol(Ch) ⊆ C ′h

? 78
5.4.4 Reduction of Sol(Ch) ⊆ C ′h

? to min<(Sol(Ch)) ⊆ C ′h
? . . 81

5.4.5 Decision procedure for min<(Sol(Ch)) ⊆ C ′h
? 83

5.4.6 Discussion on complexity 84
5.4.7 Extension to ground right-hand side 87

5.5 Concluding remarks . 87

6 Conclusions 88

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 4/94

List of Figures
1 The transition rules of the running example (LHS) and their

abstraction (RHS). 19
2 The key life-cycle as formalized by the term implications. . . . 20
3 Dependency graph, example 3.1. 36

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 5/94

List of Tables
1 Experimental results using SPASS and ProVerif 27

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 6/94

1 Introduction
Abstraction consists in transforming the model to be analysed (a concrete
model) into a simpler one (an abstract model) amenable to analysis. This
transformation can be defined on the states of the model (data abstraction)
or on the relation defining the possible transitions between states of the
model (control abstraction), or both. One requires that the transformation
must be sound with respect to a class of properties, i.e. a property proved on
the transformed model must also hold in the original one. This requirement
implies that the original model must be over-approximated in the sense that
every reachable state or trace of the concrete system has a counterpart (mod-
ulo an abstraction relation) in the abstract system. Thus, in the worst case,
a concrete system may be secure, while we are not able to prove this using
its abstraction. In the analysis of security protocols, data abstraction has
been widely used to verify protocols for an unbounded number of sessions,
e.g. [17, 22, 26, 33, 42, 52, 61], mapping the infinite set of fresh data created
during the sessions to a finite set, and giving sufficient conditions for this
abstraction to be correct [27]. The transitions can also be abstracted by a
set of Horn clauses. Hence, the number of times a transition can be fired as
well as the ordering of transitions is relaxed. This abstraction amounts to
considering an over-approximation of the reachability relation that does not
suffer from the classical interleaving problems encountered in concurrent sys-
tems verification. Both abstraction techniques can be fruitfully employed for
scaling services validation procedures too. In this deliverable, we present sev-
eral abstraction techniques for the validation of trust and security properties
of services.

Set-Based Abstraction Previously known Horn-clause protocol abstrac-
tions fail on problems where the set of true facts does not monotonically grow
with the executions of the protocols. However, such situations frequently oc-
cur when servers maintain some form of database, for instance a key-server
maintains a set of keys, to which agents they belong and what their status
is, e.g. valid or revoked/outdated. We introduce a new abstraction tech-
nique (§ 2) for tackling this problem. We define an equivalence relation on
all created data according to their status and membership in the databases
of the participants. For instance, suppose there are two agents a and b which
each maintain a set of keys that are either unknown, valid, or revoked; two
concrete keys k1 and k2 are now mapped to the same abstract key k iff they
are equal in the membership of the databases, e.g. a considers both keys as
revoked, and b considers both as valid. This approach is practically feasible.
The implementation and a library of examples with detailed descriptions is

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 7/94

available in [54].

Encoding security-policy clauses To decide reachability-based proper-
ties in security-sensitive services we need to also take the policy engines of
services into account. Towards a seamless decision algorithm that accounts
for both the communication and policy levels of services, we propose in § 3
an encoding that shows that (a fragment of) policy-level computations of
services can be seen as message derivations in the Dolev-Yao attacker model.
Then, intuitively, the attacker and all the services would be equipped with
the reasoning power of the Dolev-Yao model, which is well understood and
comes with decision algorithms for reachability. The approach has been ap-
plied to policies expressing trust application or trust delegation, as well as
role hierarchy as in Role based access control.

One-step Transition Decision Procedures In ASLan, a transition is
defined modulo a set of Horn clauses that express the security policies and
trust-negotiation capabilities of the individual entities. Our choice of Horn
clauses enables one to encode rich security policies, but this chosen setting
implies that deciding whether the security policies of the different entities
allow for the execution of a given step in ASLan is in general undecidable.
We present in § 4 some restrictions or assumptions under which one regains
decidability while keeping an acceptable level of expressiveness.

Compositional reasoning is important too in software engineering, e.g. for
modular software design and for stepwise refinement. For instance, one may
validate a system that comprises partially specified components, therefore
avoiding too early commitments. Compositional reasoning has already been
addressed in Deliverable 3.3 [7], where several abstractions of communication
channels have been proposed and applied to SAML-SSO. We pursue in this
deliverable the development of suitable compositional reasoning techniques
for services.

Process Equivalence Formal methods and related tools have proved to
be successful for checking that protocols and services satisfy some security
properties. But they are limited in expressiveness since in most cases the
focus has been on the resolution of reachability problems, and as a conse-
quence very few effective procedures (e.g. [18]) consider the more general
case of equivalence properties useful for modelling many important security
properties. For instance, the fundamental security compositionality results
by Canetti et al. (e.g., [28, 48]) require one to prove that a process is equiv-
alent to an ideal abstraction of it in every environment. Hence, deciding

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 8/94

equivalence of processes is mandatory to obtain automated compositionality
proofs. In § 5, we give an algorithm for deciding the equivalence of processes
represented as symbolic constraints. The result applies to the large class of
deduction systems parameterized by a subterm convergent equational theory.

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 9/94

2 Set-Based Abstraction
Tools based on over-approximation like ProVerif have been very successful
on the verification of security protocols and web services [17, 25, 23, 61, 16].
In contrast to conventional model checking approaches like [50, 11, 5], the
over-approximation methods do not consider a state transition system, but
just a set of derivable (state-independent) facts like intruder knowledge (and
the intruder never forgets). Moreover, the creation of fresh keys and nonces
is replaced by a function of the context in which they are created. For
instance if agent a creates a nonce for use with agent b, this may simply be
n(a, b) in every run of the protocol. The main advantage is that this kind
of verification works for an unbounded number of sessions, while standard
model checking methods consider a bounded number of sessions. In fact, the
entire interleaving problem of model checking does not occur in the over-
approximation approach, and tools thus also scale better with the number of
protocol steps and repeated parts of the protocol. Another advantage is that
models of this kind can be represented as a set of first-order Horn clauses
for which many existing methods can be used off the shelf, e.g. the SPASS
theorem prover [61, 62].

A disadvantage of the abstractions are false positives, i.e. attacks that are
introduced by the over-approximation. In the worst case we may thus fail to
verify a correct protocol. This problem can sometimes be solved by refining
the abstraction. However, if we turn to more complex systems that consist of
several protocols or web services, the abstraction approaches reach a limita-
tion. The reason is that we may consider servers that maintain some form of
database, for instance a key-server maintains a set of keys, to which agents
they belong and what their status is, e.g. valid or revoked/outdated. An-
other example is a web service for online shopping that maintains a database
of orders that have been processed and their current status. Further, servers
may maintain a database of access rights and access rights may be revoked.
Common between these examples is that the set of true facts does not mono-
tonically grow with the executions of the protocols. Such non-monotonic
behavior simply cannot be expressed in the standard (stateless) approach of
abstracting protocols by a set of Horn clauses, because deduction is mono-
tonic, i.e. adding facts like a revocation can never lead to fewer deductions.

This work tackles this problem with a different kind of abstraction of the
fresh data while maintaining the basic approach of over-approximating the
protocol or web service by a set of first-order Horn clauses. As a basis, we
consider a model where each participant can maintain a database in which
freshly generated data like nonces, keys, or order-numbers can be stored along
with their context, e.g. the owner and status of a key. To deal with such

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 10/94

systems in an abstraction approach, we define the abstraction of all created
data by their status and membership in the databases of the participants.
For instance, suppose there are two agents a and b which each maintain a
set of keys that are either unknown, valid, or revoked; two concrete keys k1
and k2 are now mapped to the same abstract key k iff they are equal in the
membership of the databases, e.g. a considers both keys as revoked, and b
considers both as valid.

So, as usual in these approaches, the infinite set of data is mapped to
finitely many equivalence classes or representatives (if we have finitely many
participants), but here the abstraction depends on the current state of the
databases. Consider for example that the intruder knows a message m con-
taining, as a subterm, the abstract key k mentioned above. Consider further
a transition rule that allows one to revoke a key at agent b, so that in the
abstract model, the key k should be “transformed” into a key k′ represent-
ing all the keys that are known as revoked to both a and b. The idea to
handle this in the abstraction is to maintain all previous facts that contain
the key k in its old form and to add also all these facts with k′ replaced for
k. So everything the intruder knows with a valid key k (in b’s eyes), he also
knows with a revoked key k′. The intuitive reason why this is indeed sound
is that—thanks to the over-approximation—every derivation in the abstract
model corresponds to an unlimited number of executions with concrete data
that fall into the same equivalence class.

The transformation of facts that arises from the state-transition of the
database is expressed by a new kind of rule, so-called term implication rules
that have the form φ→ k →→ k′. This expresses that, if the clauses in φ hold,
then f [k] implies f [k′] for every context f [·]. We show that these rules can
be encoded into standard Horn clauses.

The contributions of the work described in this section are both theoreti-
cal and practical. First, we define the specification language AIF, a variant of
the projects specification language ASLan, that allows for a declarative speci-
fication of the un-abstracted transition system with fresh data and databases.
Defining AIF has the advantage that we have a clear boundary of the speci-
fications that our method can support, both including some restrictions and
some extensions. Second, we define a novel way to abstract this specification
into a set of Horn clauses and term implication rules, a concept that naturally
arises from this kind of specification. Third, we show that this abstraction
is sound, i.e. without excluding attacks. Fourth we show how to encode also
the term implication rules as Horn clauses without excluding or introducing
attacks. Fifth, we implement this translation from AIF to Horn clauses for
the syntax of the tools SPASS and ProVerif, both of which implement state
of the art resolution techniques for first-order (Horn) clauses. This allows us

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 11/94

to demonstrate with a number of non-trivial examples that the approach is
practically feasible. The implementation and a library of AIF examples with
detailed descriptions is available [54].

2.1 AIF and the Concrete Model
We now introduce the language AIF that we use for specifying security pro-
tocols, web services, and their goals without the abstraction. It is a variant
of ASLan influenced by the needs of our methods and adding syntactic sugar
for convenience.

2.1.1 A Running Example

Before we give the formal definition, we first introduce a simple example that
we use throughout this section. For simplicity, we limit the example to three
agents: the honest user a, the honest server s, and the dishonest intruder
i. The full specification considered in subsection 2.6 is parametrized and
can be used with any (but fixed) number of honest and dishonest users (see
also [54]).

Each agent has a database of its own that contains all the information
that this agent has to maintain over a longer time (i.e., that may span sev-
eral sessions). In our example, the user keeps a database of all its valid
public/private key pairs that it currently has registered with the server s.
We denote with inv(k) the private key that belongs to public key k. Thus,
all entries of a’s database are of the form (k, inv(k)) and it is sufficient to
represent the database entries only by the public key k (omitting inv(k) in
the term representation of the database). We thus write the set condition
k ∈ ring(a) for every key k in the database of a.

The server stores in its database the registered keys along with their
owner and status, which is either valid or revoked. One could write for
instance (k, a, valid) ∈ db(s) for a key k that is stored in the database of s as
a valid key owned by a, but we rather use a slightly different representation
and write k ∈ db(s, a, valid). This is equivalent to thinking of a server that
maintains for each user two databases, namely the sets of valid and revoked
keys. This representation is helpful for the abstraction below because all sets
contain only data that can be abstracted (public keys in this example) rather
than a mixture of different kinds of data.

An AIF specification describes a state transition system by a set of rules.
The first rule of our example is an initialization rule that represents an out
of band registration of the key with a server. (Suppose the user physically

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 12/94

visits the organization that owns the server.)

=[PK]⇒ PK ∈ ring(a) · PK ∈ db(s, a, valid) · iknows(PK)

This rule can be taken in any state (because there are no conditions left of
the arrow) and will first create a fresh value (that never occurred before)
that we bind to the variable PK , intuitively a public key. In the succes-
sor state, PK is both in the databases of a and of the server as a valid
key. We use iknows(m) to denote that the intruder knows m, so in this
case he learns immediately the new public key PK . The rule can be ap-
plied any number of times to register as many keys as desired. Note that
iknows(·) does not have a predefined meaning in AIF, is rather character-
ized by intruder deduction rules reflecting the standard Dolev-Yao model,
e.g. iknows(M).iknows(inv(K)) ⇒ signinv(K)(M) (which can be applied to
any state that contains facts matching what is left of ⇒).

The second rule of our example is the transmission of a new key using a
registered valid key:

PK ∈ ring(a) · iknows(PK)
=[NPK]⇒ NPK ∈ ring(a) · iknows(signinv(PK)(new, a,NPK))

We do not repeat the condition PK ∈ ring(a) on the RHS; in AIF this means
that this condition gets removed by the transition, i.e. the user a forgets the
key PK (which is a bit unrealistic and only done for the sake of simplicity).

The third rule is the server receiving such a message, registering the new
key and revoking the old key:

iknows(signinv(PK)(new, a,NPK)) · PK ∈ db(s, a, valid)·
NPK /∈ db(s, a, valid) · NPK /∈ db(s, a, revoked)
⇒ PK ∈ db(s, a, revoked) · NPK ∈ db(s, a, valid)
·iknows(inv(PK))

Here, the intruder learns the private key of the revoked key.
To define a security goal, we give yet a further rule that produces the fact

attack if the intruder finds out the private key of a valid public key of a:

iknows(inv(PK)) · PK ∈ db(s, a, valid)⇒ attack

2.1.2 Formal Definition of AIF

We use a standard term model of messages, the only specialty is the distinc-
tion of constants and variables that will be abstracted later.

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 13/94

Definition 1 Messages are represented as terms over a signature Σ∪A and
a set V of variables, where Σ is finite, V is countable, and A is a countable
set of constant symbols (namely those that are going to be abstracted later).
Σ, A, and V are non-empty and pairwise disjoint. Let VA ⊂ V be a set of
variables that can only be substituted by constants of A. Let TA = A ∪ VA

denote the set of all abstractable symbols. By convention, we use upper-case
letters for variables and lower-case letters for constant and function symbols.

Note that we assume a free algebra interpretation of terms (i.e. two terms
are equal iff they are syntactically equal). We come back later to this issue
when we use SPASS (which does not consider a fixed interpretation).

Definition 2 Let Σf be a finite signature (disjoint from all sets above) of
fact symbols. A fact is a term of the form f(t1, . . . , tn) where f is a fact
symbol of arity n and the ti are messages. A positive (negative) set condition
has the form t ∈M (t /∈M) where t ∈ TA and M is a set expression, namely
a ground message term in which no symbol of TA occurs.

The syntactic form of set expressions like M in this definition enforces that
a specification can only use a fixed number of sets that we denote with N .
Also, we will thus simply assume these sets are called s1, . . . , sN , while in
AIF specifications, one we will use more intuitive terms like ring(a) for the
set of keys known by agent a.

We now come to the core of the AIF specifications, namely the state
transition rules.

Definition 3 A state is a finite set of facts and positive set conditions. A
transition rule r has the form

LF · S+ · S− =[F]⇒ RF ·RS

where LF and RF are sets of facts, S+ and RS are sets of positive set
conditions, S− is a set of negative set conditions, and F ⊆ VA. We require
that

vars(RF ·RS · S−) ⊆ F ∪ vars(LF · S+) and vars(S−) ∩ F = ∅ .

Moreover, we require that each t ∈ TA that occurs in S+ or S− also occurs in
LF and each t ∈ TA that occurs in RS also occurs in RF .1

We say S ⇒r S
′ iff there is a grounding substitution σ (for all variables

of r) such that
1This condition ensures that when we remove set conditions in rules and states in the

abstract model below, the elements (that will carry the set conditions in their abstraction)
still appear in the normal facts.

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 14/94

• (LF · S+)σ ⊆ S,

• S−σ ∩ S = ∅, S ′ = (S \ S+σ) ∪RFσ ∪RSσ,

• Fσ are fresh constants from A (i.e. they do not occur in S or any rule
r that we consider).

A state S is called reachable using the set of transition rules R, iff ∅ ⇒∗R S.
Here ⇒R is the union of ⇒r for all r ∈ R and ·∗ is the reflexive transitive
closure. (We generally use the ∅ as the initial state.)

Intuitively, the left-hand side of a rule describes to which states the rule
can be applied, and the right-hand side describes the changes to the state
after the transition.

There is a subtle difference to ASLan (and to other set-rewriting/multi-
set rewriting approaches). In AIF, facts are persistent, i.e. a fact that holds
in one state also holds in all successor states. The only entities that can
be removed from a state during a transitions are the positive set conditions,
namely by a transition rule that has a positive condition x ∈ si on the left-
hand side that is not repeated on the right-hand side.

The persistence of facts is a restriction with respect to other ap-
proaches, but one that comes without loss of generality: a non-persistent
fact f(t1, . . . , tn) of ASLan can be simulated in AIF by a persistent fact
f ′(t1, . . . , tn, F ID), where FID is a fresh identifier created when introducing
the fact, and using a distinguished set valid that contains FID in exactly
those states where f(t1, . . . , tn) holds.

Our construction to make set membership the only “revocable” entity
while facts monotonously grow over transitions gives a distinction that be-
comes valuable in the abstraction later. To see that, consider that the AIF
transition rules (or the ASLan transition rules) are not monotonic (i.e. a rule
that is applicable to a state S is not necessarily applicable to any superset
of S). In contrast, the Horn-clauses of the abstract model are interpreted in
standard–monotone–first-order logic. Our construction thus ensures that all
the non-monotonic aspects, the set memberships, are part of the abstraction.

We close this discussion with the remark that all previous abstraction
approaches in protocol verification like [17, 25, 23, 61] are entirely based
on persistent facts. This (usually) means an over-approximation that leads
to the following phenomenon [53]: every participant can react to a given
message any number of times, even if the real system prevents that with
challenge-response or timestamps. As can be seen by the success of the
abstraction methods, this over-approximation usually works fine (if one does
not consider replay which requires special care [19]). So in general, for what

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 15/94

concerns this new abstraction approach where we have the choice to make
things revocable, one may start with a model where all facts are persistent
and perform the above encoding of non-persistent facts only when necessary,
i.e. when one obtains false attacks caused by the over-approximation.

2.1.3 Syntactic Sugar

For readability and brevity of specifications, the AIF language supports a
number of constructs to avoid finite enumerations. One can declare a number
of variables that range over a given set of constants, e.g.:

A,B : {a, b, s, i};
Honest : {a, b};
Status : {valid, revoked};

We call variables that have been declared in this way enumeration variables.
An AIF specification includes the enumeration of all sets or databases that
occur in the specification. Here, the enumeration variables can be used. For
example:

Sets : ring(Honest), db(s, A, Status);
defines that every honest agent Honest has its own keyring ring(Honest),
which may be for instance a set of public keys, and the server s has a database
for each agent A and each Status, each of which may again be a set of public-
keys. Thus, this example specification uses N = 10 sets.

One can further use the enumeration variables as abbreviations in rules.
First, we may use universal quantification of enumeration variables in nega-
tive set conditions, e.g.

∀A, Status.PK /∈ db(s, A, Status)

to mean that PK cannot occur in any of the sets covered by expanding all
values of the enumeration variables, so this example expands to 8 negative
set conditions.

Second, we can parametrize an entire rule over enumeration variables.
We may write for instance λA. ⇒ iknows(A) to denote that the intruder
knows every agent name. We write λ to avoid confusion with quantification:
in fact, the meaning of λX.r is the set of rules {r[X 7→ v] | v ∈ V } where V
is the enumeration declared for X.

With this syntactic sugar, it is easy to generalize our example specifi-
cation for any number of honest and dishonest users and servers, namely
by replacing the constants by enumeration variables and enumerating the
desired set of agents there [54]. The “unrolling” of this sugar is not always

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 16/94

efficient and we plan as future work to investigate strategies for avoiding that
in the translation.

2.1.4 Inconsistent Rules

We exclude rules that are “inconsistent” in a certain sense (although their
semantics is well-defined):

Definition 4 A rule r = LF ·S+ ·S− =[F]⇒ RF ·RS is called inconsistent,
if any of the following holds:

• t ∈M occurs in S+ and t /∈M occurs in S−, or

• s ∈M occurs in S+ \RF and t ∈M occurs in RF , and the rule allows
for an instantiation σ with sσ = tσ.

For the remainder, we consider only consistent rules.

The first kind of inconsistent rule is simply never applicable. For the second
kind, we get the contradiction only under a particular instantiation, namely
when sσ = tσ, because the rule says that the constraint sσ ∈ M should be
removed and tσ ∈ M should be added or kept. (The semantics tells us that
here the positive constraint to keep tσ ∈M wins.)

Note that all rules of our running example are consistent; for instance
in the second rule, the instantiation PKσ = NPKσ is not possible because
NPK is fresh, and in the third rule such a substitution is also ruled out by the
left-hand side constraints PK ∈ db(s, a, valid) and NPK /∈ db(s, a, valid).
In fact, the notion that a rule allows for the instantiation sσ = tσ is purely
syntactical (i.e. independent of the actually reachable states).

There are two reasons to exclude inconsistent rules. First, they often
result from a specification mistake, i.e. they do not reflect what the user
actually wanted to model. Second, the soundness proof of our abstractions
below is more complex when allowing the second kind of inconsistent rules.

2.2 Set-Based Abstraction
The core idea of set-based abstraction is the following: we abstract the fresh
data according to its membership in the used sets. For instance, if we have
three sets s1, s2, and s3, we may abstract all elements that are contained in
s1 but not in s2 and s3 into one equivalence class denoted val(1, 0, 0).

In our running example, we have the sets s1 = ring(a), s2 = db(s, a, valid),
and s3 = db(s, a, revoked). Thus let val(1, 0, 0) represent the class of all public
keys that the user a has created but that are not (yet) registered with the

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 17/94

server s as valid or revoked. The abstract model thus does not distinguish
between several different keys that have the same status in terms of set-
membership.

The standard way to express the abstract model by Horn clauses in pre-
vious approaches does not work with this abstraction. In particular, when
the set membership of a constant changes from the abstract value a to the
abstract value a′, then for every derivable fact f [a] that contains a also f [a′]
is derivable. This requires an extension with a new kind of rule that can
exactly express f [a] =⇒ f [a′] for every context f [·] and which we formalize
below. Note that this kind of rule is different from an algebraic equation like
a ≈ a′, because f [a′] does not necessarily imply f [a]; moreover, it is different
from a rewrite rule, because f [a] is not replaced by f [a′] but both f [a] and
f [a′] hold.

2.2.1 Definition of the Abstraction

Definition 5 Consider a set of rules that uses the ground terms s1, . . . , sN
in set conditions t ∈ si and t /∈ si (including the choice of a total order on
the si). For a state S, we define the function absS that maps from A to
val(Bn) as follows: absS(c) = val(b1, . . . , bN) with bi true iff (c ∈ si) ∈ S.
This induces an equivalence relation (parametrized by a state S) on A: define
c ≡S c′ iff absS(c) = absS(c′).

It is indeed unusual that an abstract interpretation depends on states and
can change from state to state. This reflects exactly why the databases we
want to model do not exactly fit into the standard abstraction approach of
protocol verification: the abstract model does not have a notion of states any
more. We will see below (in subsection 2.3) how to overcome this problem
and define a state-independent abstraction function.

2.2.2 Term Implication Rules

We now introduce the form of rule that allows us to deal with abstractions
with the changing set-membership of constants.

Definition 6 A term implication rule has the form

P1 . . . Pn
s→→ t

where the Pi are predicates (i.e. facts) and vars(t)∪vars(s) ⊆ ⋃ni=1 vars(Pi).
An implication rule is either a term implication rule or a Horn clause. We

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 18/94

often write A→ C instead of A
C

. We may also write A→ C1 · . . . ·Cn as an
abbreviation for the set of rules {A→ Ci | 1 ≤ i ≤ n }.

For implication rules, we define a function that, given a set Γ of facts,
yields all facts that can be derived from Γ by one rule application:[[

φ1 . . . φn
φ

]]
(Γ) = {φσ | φ1σ ∈ Γ ∧ . . . ∧ φnσ ∈ Γ}[[

φ1 . . . φn
s→→ t

]]
(Γ) = {C[tσ] | C[sσ] ∈ Γ ∧ φ1σ ∈ Γ

∧ . . . ∧ φnσ ∈ Γ }

Here, C[·] is a context, i.e. a “term with a hole”, and C[t] means filling
the hole with term t. The least fixed-point of a set of implication rules R,
denoted LFP (R) is defined as the least set Γ that is closed under [[r]] for each
r ∈ R.

2.2.3 Translation to Abstract Rules

We now translate the standard transition rules (that work on the real sets) to
implication rules of an abstract model (that work on the abstract encoding of
set membership). We show in subsection 2.3 that this abstraction is sound.
Definition 7 Consider a transition rule

r = LF · S+ · S− =[F]⇒ RF ·RS

Let TA(r) be the symbols from TA that occur in r. We define for each t ∈ TA(r)
and for each 1 ≤ i ≤ N :

Li(t) =

1 if t ∈ si occurs in S+

0 if t /∈ si occurs in S−
Xt,i otherwise

Ri(t) =

1 if t ∈ si occurs in RS
Xt,i otherwise, if Li(t) = Xt,i and t /∈ F
0 otherwise

Here, let Xt,i :: B be variables that do not occur in r. Let

L(t) = val(L1(t), . . . , LN(t))
R(t) = val(R1(t), . . . , RN(t)) .

The abstraction r of the rule r is defined as:

r = LFλ→ RFρ · C

for the following substitutions λ and ρ and term implications C:

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 19/94

=[PK]⇒ →
iknows(PK) · PK ∈ ring(a) · PK ∈ db(s, a, valid) iknows(val(1, 1, 0))
iknows(PK) · PK ∈ ring(a) iknows(val(1, X1, X2))
=[NPK]⇒ →
NPK ∈ ring(a) · val(1, X1, X2)→→ val(0, X1, X2) ·
iknows(signinv(PK)(new, a,NPK)) iknows(signinv(val(0,X1,X2))(new, a, val(1, 0, 0)))
iknows(signinv(PK)(new, a,NPK)) · iknows(signinv(val(X1,1,X2))(new, a, val(X3, 0, 0)))
PK ∈ db(s, a, valid) · NPK /∈ db(s, a, valid)·
NPK /∈ db(s, a, revoked)
⇒ →
PK ∈ db(s, a, revoked) · val(X1, 1, X2)→→ val(X1, 0, 1) ·
NPK ∈ db(s, a, valid) · val(X3, 0, 0)→→ val(X3, 1, 0) ·
iknows(inv(PK)) iknows(inv(val(X1, 0, 1)))
iknows(inv(PK)) · PK ∈ db(s, a, valid) iknows(inv(val(X1, 1, X2)))
⇒ →
attack attack

Figure 1: The transition rules of the running example (LHS) and their ab-
straction (RHS).

• λ = [t 7→ L(t) | t ∈ TA(r)]

• ρ = [t 7→ R(t) | t ∈ TA(r)]

• C = {tλ→→ tρ | t ∈ TA(r) \ F}

2.2.4 The Example

Figure 1 shows the translation of our running example. Thanks to the ab-
straction, it is straightforward to convince oneself that attack is unreachable,
as this requires the fact iknows(inv(val(X1, 1, X2))) (i.e. a valid key) whereas
the only rule that gives the intruder a private key has the incompatible set
membership (X1, 0, 1) (i.e. a revoked key) and there is no term implication
rule that could turn a revoked key into a valid one. Let

SK = {val(0, 0, 0), val(0, 1, 0), val(0, 0, 1)}
K = SK ∪ {val(1, 0, 0), val(1, 1, 0)}

K is the set of all public keys that occur in some fact. (The other three
bearable keys val(0, 1, 1) and val(1, 1, 1) and val(1, 0, 1) do never occur.) The

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 20/94

1,0,0

0,0,0

0,1,0 0,0,1

1,1,0

Figure 2: The key life-cycle as formalized by the term implications.

subset SK contains those keys that can ever occur as the signing key in a
signature.

The fixed-point is Γ = {iknows(m) | m ∈M} where

M = DY(K ∪ {signinv(sk)(a, new, k) | sk ∈ SK, k ∈ K}
∪{inv(val(0, 0, 1))})

and DY(·) denotes the closure under protocol-independent intruder deduc-
tion rules (like encryption). In particular, only the private keys of revoked,
invalid keys get known to the intruder, and attack is not in Γ.

We note that the concrete term implications s →→ t which get activated
in Γ, displayed in Figure 2, represent exactly the life-cycle of keys.

2.3 Soundness
For verification, the crucial property of our abstraction is that if the concrete
model has an attack, then so has the abstract model. If this holds, then ver-
ification of the abstract model implies verification of the concrete model.We
take a detour over some intermediate models which greatly simplifies the
actual proof of correctness.

The labeled concrete model The first idea is to label all symbols of TA

in the concrete model with the corresponding abstract terms according to
Definition 5. Being merely an annotation, this does not change the model.

Definition 8 The labeled concrete model is defined as the following modifi-
cation rules of the concrete model: every t ∈ TA on the LHS (RHS) of a rule
is labeled with L(t) (R(T)) (cf. Definition 7). We denote the labeling of term
t with label l by t@l. Moreover, for each t ∈ TA that occurs on both sides,
we add the label modification t@L(t) 7→ t@R(t). This label modification is
applied as a replacement on the successor state: let r′ = r · (t@l 7→ t@l′) the
augmentation of r with the label modification. We then define r′ transitions
based on r transitions as follows: if S ⇒r S

′ under match σ then S ⇒r′ S
′τ

where τ is the replacement of all occurrences of tσ (for any label) with tσ
labeled by l′.

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 21/94

As an example, the second rule of our running example looks as follows
in the labeled model:

iknows(PK@(1, X1, X2)) · PK@(1, X1, X2) ∈ ring(a)
=[NPK@(1, 0, 0)]⇒
NPK@(1, 0, 0) ∈ ring(a)
iknows(signinv(PK@(0,X1,X2))(new, a,NPK@(1, 0, 0))) ·
PK@(1, X1, X2) 7→ PK@(0, X1, X2)

Lemma 1 In the labeled model, in every state S, every occurrence of an
abstractable constant c is labeled with l = (b1, . . . , bN) such that bi is true iff
the set condition c ∈ si is contained in S.
Proof. We show this by induction over reachability. It trivially holds for
the initial state. For transitions, suppose the property holds in state S, and
S →r′ S

′ for some labeled rule r′ and let σ be the rule match. Consider
any c ∈ Abs that occurs in S ′ with label (b1, . . . , bN). We show for every
1 ≤ i ≤ N : bi is true iff c ∈ si occurs in S ′. We distinguish the following
cases:

• c does not occur in S, so it was freshly created by the transition to S ′.
Thus there is a variable X in the fresh variables of r′ such that Xσ = c.
By definition, X (and thus every occurrence of c in S ′) is labeled with
bi = Ri(X) which is true iff Xi ∈ si is contained in the right-hand side
of r′, which is the case iff c ∈ si is contained in S ′.

• c occurs in S, and for no abstractable variable X in r′ it holds that
c = Xσ. Then c is simply not touched by the transition and has the
same label and set memberships in both states.

• c occurs in S, and for some abstractable variable X in r′, we have
Xσ = c. (Note there may be other variables Y with Y σ = c.) We
further distinguish:

– X ∈ si occurs in S+. Then c ∈ si occurs in S and there is
no variable Y such that both Y σ = c and Y /∈ si occurs in S−
(otherwise r′ would not have been applicable to S under σ). If
for any variable Y with Y σ = c, Y ∈ si occurs in RS, then also
X ∈ si must occur in RS otherwise the rule is not consistent (cf.
Definition 4). Thus Ri(X) and bi is true and c ∈ si is contained
in S ′. Otherwise, if for no variable Y with Y σ = c, Y ∈ si is
contained in RS, then by the definition there is a label change for
X in r′, namely changing at least the ith position from true to
false. Then c ∈ si is not in S ′ and bi is false.

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 22/94

– X /∈ si occurs in S−. Then c ∈ si does not occur in S, and there
is no variable Y with Y σ = c and Y ∈ si in S+. Suppose for any
Y with Y σ = c, Y ∈ si occurs in RS, then also X ∈ si in RS
(otherwise the rule were again inconsistent). Thus there is a label
change in the ith position from false to true and bi is true and
c ∈ si is contained in S ′. Otherwise, X is labeled on both sides
with false for the ith component, and bi is false, and c ∈ si does
not occur in S ′.

– Neither X ∈ si occurs in S+ nor X /∈ si occurs in S−. If X ∈ si
occurs in the RS, then we have a label change in the ith position
of the labeling of X, namely from arbitrary Xi to 1. Thus bi is
1 and c ∈ si occurs in S ′. Otherwise, if X ∈ si does not occur
in RS, then X is not involved in any set conditions. Then either
c stays with the same label and set membership in the transition
from S to S ′, or there is another variable Y with Y σ = c and any
of the above cases can be applied with Y in the role of X.

• c occurs in S but there is no abstractable variable X in r′ such that
Xσ = c. Then there is no change of set memberships of c and no label
change and the property remains that the labeling is correct.

2

Labeled concrete model without set conditions The labels are thus
a correct alternative representation of the set conditions, and as a second
step we now “upgrade” the labels from a mere annotation to a part of term
structure, i.e. considering @ as a binary (infix) function symbol. Then,
upon rule matching the label does matter. In turn, we can remove the set
conditions from our model completely, because we can always reconstruct
the set memberships from the labels (thanks to persistence and rule form,
no abstractable constants can get lost on a transition) and the set conditions
on the left-hand side of a rule are correctly handled by the label matching.
In this labeled model without set conditions, the second rule of our running
example is:

iknows(PK@(1, X1, X2))
=[NPK@(1, 0, 0)]⇒
iknows(signinv(PK@(0,X1,X2))(new, a,NPK@(1, 0, 0))) ·
PK@(1, X1, X2) 7→ PK@(0, X1, X2)

Note how close this rule is to the abstract model, while still being a state
transition rule. It is immediate from Lemma 1 that this changes the model
only in terms of representation:

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 23/94

Lemma 2 The labeled model and the labeled model without set conditions
have the same set of reachable states modulo the representation of set condi-
tions in labels.

The abstraction All the previous steps were only changing the represen-
tation of the model, but besides that the models are all equivalent. Now we
finally come to the actual abstraction step that transforms the model into
an abstract over-approximation.

We define a representation function η that maps terms and facts of the
concrete model to ones of the abstract model:

Definition 9

η(t@(b1, . . . , bN)) = val(b1, . . . , bN) for t ∈ TA

η(f(t1, . . . , tn)) = f(η(t1), . . . , η(tn))
for any function or fact symbol f of arity n

We show that the abstract rules allow for the derivation of the abstract
representation of every reachable fact f of the concrete model:

Lemma 3 Let R be a rule set in AIF, R′ be the corresponding rule set in the
labeled model without set conditions of R, f be a fact in a reachable state of
R′ (i.e. ∅ →∗R′ S and f ∈ S for some S). Let R be the translation into Horn
clauses of the rules R according to Definition 7, and Γ = LFP (R). Then
η(f) ∈ Γ.

Proof. Again we show this by induction over reachability. The initial state
∅ is clear. Let now S be any reachable state and η(f) ∈ Γ for every f ∈ S.
We show that for every S ′ that is reached by one rule application and every
f ∈ S ′ also η(f) ∈ Γ.

Let the considered rule be

r = LF =[F]⇒ RF · LM

where LM are the label modifications (see Definition 8)—being part of the
labeled model without set conditions there are no set conditions in the rule.
By our constructions, the Horn clauses R contain a similar rule, namely

r = η(LF)→ η(RF) · η(LM)

where we extend η to sets of facts as expected. The extension of η to label
modifications (and sets thereof in η(LM)) is also straightforward:

η(t@l 7→ t@l′) = val(l)→→ val(l′)

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 24/94

Let now σ be the corresponding substitution for S →r S
′. Then LFσ ⊆ S

and thus η(LFσ) ⊆ η(S). Thus the Horn clause r is applicable and therefore
η(RFσ) ⊆ Γ. It remains only to show that all the modifications of facts by
the label modification rule are also contained in Γ.

To that end, consider any fact f [c@l] ∈ (S ∪ RF)σ that has exactly one
occurrence of c@l and LM contains the rule t@l 7→ t@l′ for some t with
tσ = c. Since l →→ l′ is part of the term implication of r and since we
have η(f [c@l]) ∈ Γ, we also have η(f [c@l′]) ∈ Γ. If there is more than one
occurrence of an abstractable constant in a fact that is affected by a label
modification, then we can repeatedly apply this argument. Note that the
term implication of the (generalized) Horn clauses only replace one occur-
rence at a time. The reason is that from the label l we cannot be sure that all
its occurrences correspond to the same constant c@l in the concrete model,
so replacement of only part of the labels is included.

We have thus shown that all the facts in S ′ are also contained in Γ, modulo
the representation function η. 2

From Lemmata 2 and 3 immediately follows that the over-approximation
is sound:

Theorem 1 Given an AIF specification with rules R. If an attack state is
reachable with R, then attack ∈ LFP (R).

2.4 Encoding Term Implication
We show how the term implication rules that we have introduced can be
encoded into Horn clauses. Intuitively, the problem is that the rule s →→ t
expresses C[s] =⇒ C[t] for any context C, and thus summarizes an infinite
number of Horn clauses. However, this infinite enumeration can be avoided
by limiting ourselves to ones that can be instantiated to a derivable fact.
This can be done using a new constant symbol ε and two new binary fact
symbols occurs and implies (i.e. these symbols do not occur in the given
specification). occurs(p, t) expresses that t is a subterm of some fact that
holds, and either

• p is ε, then t is a direct subterm of a fact that holds, or

• p is also a subterm of a fact that holds, and t is a direct subterm of p.

Further, implies(s, t) represents a rule of the form s →→ t. For every n-ary
fact symbol f (not including occurs and implies), every m-ary operator g,

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 25/94

every 1 ≤ i ≤ n and every 1 ≤ j ≤ m, we have the following Horn clauses:

f(x1, . . . , xn)→ occurs(ε, xi)
occurs(x, g(y1, . . . , ym))→ occurs(g(y1, . . . , ym), yj)
occurs(g(x1, . . . , xm), xj) · implies(xj, y)
→ implies(g(x1, . . . , xm), g(x1, . . . , xj−1, y, xj+1, . . . , xm))

f(x1, . . . , xn) · implies(xi, y)
→ f(x1, . . . , xi−1, y, xi+1, . . . , xn)

Let us call these Horn clauses R0. Consider an arbitrary set of Horn clauses
Rh and term implication rules Rt. Call R′t the Horn clauses that are obtained
from Rt by replacing the consequence s→→ t by the fact implies(s, t).

Theorem 2 LFP(Rh∪Rt) = LFP(R0∪Rh∪R′t)\{implies(·, ·), occurs(·, ·)}

Proof. Let Γ = LFP(Rh ∪ Rt) and Γ′ = LFP(R0 ∪ Rh ∪ R′t) and Γ′′ =
Γ′ \ {implies(·, ·), occurs(·, ·)}.

Soundness, i.e. Γ′′ ⊆ Γ: occurs(·, t) ∈ Γ′ only holds for subterms t of facts
in Γ and implies(t1, t2) only holds if for any fact C[t1] ∈ Γ also C[t2] ∈ Γ
holds. As a consequence, the last rule schema of R0 can only give facts that
are in Γ.

Completeness, i.e. Γ ⊆ Γ′: Suppose f ∈ Γ \ Γ′, and suppose f is the
“shortest” counter-example, i.e. it can be derived with one rule application
of Rt from Γ′ (it cannot be a rule from Rh since Γ′ is closed under Rh).
Let φ1, . . . , φn → s →→ t be that rule, σ the substitution under which it
is applied and thus f = C[tσ] for some context C[·]. By the assumption
of shortest counter-example, φiσ ∈ Γ′ and C[sσ] ∈ Γ′. Thus we also have
implies(sσ, tσ) ∈ Γ′. Moreover, occurs(·, u) ∈ Γ′ for all subterms of C[sσ]
and by that we have the implies(·, ·) over corresponding subterms of C[sσ]
and C[tσ]. Thus, finally, C[tσ] ∈ Γ′. 2

2.5 Decidability
It is straightforward to adapt, to our AIF formalism, the classical proof of [41]
that protocol verification is undecidable. This is because this proof relies
only on intruder deduction rules that can be applied without any bounds.
Moreover, since it does not even use fresh constants, the proof also applies
to the abstracted model of an AIF specification. Thus, the security of AIF
specification is undecidable both in the concrete and abstract model.

Let us consider the restriction that all rule variables can be instantiated
only with variables of a given depth. Such a bounding of substitutions is
without loss of attacks in a typed model that can be justified for a large

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 26/94

class of protocols by tagging [45]. For the abstract model, decidability is
now obvious, because this makes the set of derivable terms finite. For the
concrete model, however, we now show that verification is undecidable even
when bounding the message depth. [40] shows this for verification in a stan-
dard multi-set rewriting approach, but their proof cannot be carried over to
AIF immediately because AIF only supports persistent facts and member-
ship conditions for a fixed number of sets. We show that it is expressive
enough, however, to simulate Turing machines and thus obtain the following
decidability results:
Theorem 3 Reachability of the attack fact is undecidable both in the con-
crete and in the abstract model (even when using no sets and fresh data).
With a depth restriction on substitutions, the abstract model is decidable,
while the concrete model remains undecidable.
Proof. The idea for encoding Turing machines into message-bounded AIF
is that every position of the tape is modeled by a fresh constant, and the
symbol is carried by set containment. In an initialization phase, we generate
an arbitrary long but finite tape—the length is chosen non-deterministically:2

⇒ westend(c0)

westend(c0) · c0 /∈ initializing
=[X]⇒ c0 ∈ initializing · succ(c0, X) ·X ∈ current

c0 ∈ initializing ·X ∈ current
=[Y]⇒ succ(X, Y) · Y ∈ current · c0 ∈ initializing

c0 ∈ initializing ·X ∈ current =[Y]⇒
succ(X, Y) · eastend(Y) · c0 ∈ current·
c0 ∈ q0 · c0 ∈ computing

where q0 is the initial state of the machine. For every machine transition
(q, s)→ (q′, s′, L) the rule

c0 ∈ computing ·X ∈ current ·X ∈ q ·X ∈ s · succ(Y,X)
⇒ c0 ∈ computing · Y ∈ current · Y ∈ q′ ·X ∈ s′

The rules for moving right and neutral are similar. Additionally, when the
machine reaches the eastend of the tape (which only exists in our model), we
go to a sink state of the model from which no further progress can be made:

c0 ∈ computing ·X ∈ current ·X ∈ q ·X ∈ s · eastend(X)
⇒ c0 ∈ stuck

2The finiteness is not a restriction as we use a special sink state when reaching the
eastend of the tape.

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 27/94

Note that one can easily also encode an initial value of the tape. The Turing
machine can reach a certain state q, if the concrete model has a reachable
state that contains c ∈ q for some value c. This can, of course, also be formal-
ized by an attack rule. For this model, a depth bound for variables of 1 (i.e.
variables can only be substituted by constants) is no restriction. As reacha-
bility of states for a Turing machine is undecidable, so is the reachability of
an attack state in the depth bounded concrete model. 2

2.6 Experimental Results

Problem Agents Result SPASS ProVerif
Time Time

Key-server example a, i, s safe 1s 0s
a, b, c, i, s safe 37s 0s

SEVECOM (one key) hsm, auth, i safe 12s 0s
(both keys) hsm, auth, i unsafe 0s timeout

ASW a, i, s safe 3hrs 6min
TLS (simplified) a, i safe 1s 0s

a, b, i safe 75s 13s
NSL (w. conf. ch.) a, b, i safe 17s 0s
NSPK (w. conf. ch.) a, b, i unsafe 0s 0s

Table 1: Experimental results using SPASS and ProVerif

We have implemented the translation from AIF to a set of Horn clauses
as described in the previous subsections both for the syntax of the theorem
prover SPASS and for the syntax of the protocol verifier ProVerif. This im-
plementation along with a library of AIF specifications is available, including
more detailed descriptions of the examples presented here [54].

Recall that above we explicitly said that we want to interpret terms and
Horn clauses in the free algebra: terms are interpreted as equal iff they are
syntactically equal. For instance, for different constants a and b, a = b is
false. The same is not necessarily true in first-order logic: it rather depends
on the structure (i.e. universe and interpretation of all functions and relation
symbols) in which a formula is interpreted. Thus, there are interpretations
in which the formula a = b holds. A formula is valid, if it holds in all
interpretations (e.g. a = b→ b = a).

The SPASS theorem prover allows us to declare a list of axioms φ1, . . . , φn
and a conjecture φ. It will then try to prove or disprove that φ1∧. . .∧φn =⇒
φ is valid. We use as the axioms φi the Horn clauses that result from the

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 28/94

translation of AIF and as the conjecture φ we use simply attack. When
SPASS returns “proof found”, we know that there is indeed an attack (against
the abstract model), as that can be derived from the Horn clauses in any in-
terpretation of the symbols, including the free algebra interpretation. When
SPASS however returns “completion found”, then for at least one interpreta-
tion, attack cannot be derived. Of course this means, that the attack cannot
be derived in the free algebra interpretation (because if it can be derived in
the free algebra interpretation, then it can be derived in any interpretation).
Thus if SPASS finds a completion, we know the given protocol is secure in the
abstract model with the free algebra interpretation [61] and by the soundness
also in the concrete model.

The translation to ProVerif is similar, where we may exploit domain-
specific optimizations, such as treatment of the intruder-knowledge fact. In
general it turns out that ProVerif is faster than SPASS in finding results, see
Table 1, which is not surprising as ProVerif is a dedicated, specialized tool.
(The exception where ProVerif times out is discussed below.) We have noted
the number of agents that were used in each example, and it can be seen
that this has a major influence on the run-time. This is of course due to the
fact that with the number of agents, also the number N of sets in our model
increases and the number of equivalence classes underlying the abstraction
is 2N .

As the first concrete example, we have considered our key-server example,
albeit with several honest and dishonest participants. The second example
analyzes part of a system for secure vehicle communication from the SEVE-
COM project [58]. Here, each car has a hardware security module HSM
that, amongst others, stores two public root keys of an authority (for verify-
ing messages sent by the authority). The reason for using two root key pairs
is that even if one private key is leaked, the authority can still safely update
it using the other. We have found some new attacks that were missed in
the analysis of [59], because that model does not include the authority (and
thus no legal update messages). The attacks are practically limited as they
require either several updates within a short period of time or that there is
a confusion about which key has been leaked (i.e. the intruder knows one
key and the authority updates the other). We have verified the system under
the following simple restriction (see [54] for other suggestions to avoid the
attacks): we assume that one of the two private keys is never leaked and thus
never needs an update, while the other key may be leaked and updated any
number of times. Under this restriction, we can verify the following goals:
the intruder never finds out private keys (except for ones we give him delib-
erately), he cannot insert into the HSM any keys he generated himself, and
he cannot re-insert old keys. Finally, if we give the intruder both keys, the

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 29/94

resulting trivial attack is found by SPASS immediately while ProVerif times
out. The reason seems to be that ProVerif dives into the more complicated
derivations enabled by the additional intruder knowledge before finding the
attack. We will investigate this behavior further as it occurred several times
during our experimentation with this example set.

The largest example, and in fact one of the original motivations for
this work, is the contract signing protocol ASW based on optimistic fair-
exchange [6]. Again, we restrict our discussion to a short summary of ASW
and highlighting some key issues of the formalization in AIF, more details
are found in [54]. The idea is that two parties can sign a contract in a fair
way, i.e. such that finally either both parties or no party has a valid contract.
This requires in general a trusted third party TTP, which for ASW is only
needed for resolving disputes. The TTP maintains a database of contracts
that it has processed so far, which are either aborted or resolved. A resolve
means that the TTP issues a valid contract. Whenever an agent asks the
TTP for an abort or resolve, the TTP checks whether the contract in ques-
tion is already registered as aborted or resolved. If this is not the case, then
the request to abort or resolve is granted, otherwise the agent gets the abort
token or replacement contract stored in the database.

The protocol is based on nonces to which the exchange is bound. There-
fore each agent including the TTP maintains a database of nonces. The
database stores for each nonce to which parties it relates, to which contrac-
tual text, and the status of the respective transaction. For the TTP, the
status is just aborted or revoked, for honest agents the status is the stage
in the protocol execution (there are several rounds and exceptions). One of
the major difficulties of this case study is that the fair exchange relies on
the assumption of resilient channels between agents and the TTP, i.e. the
intruder (which may be a dishonest contractual partner) cannot block the
communication forever. For this, we use a model where the request from the
user and the answer from the TTP happen in a single transition. Roughly
speaking, we have three cases for each party asking for an abort (and three
similar for resolve requests):

• The party is in a stage of the protocol execution where it can ask for
an abort, and the TTP has not previously seen the nonce contained
in the abort request, i.e. it was not involved in a resolve or an abort.
Then we can go to a state where both the party and the TTP have
noted the nonce as aborted.

• The other two rules are similar but for the case that the TTP has
already noted the nonce as aborted or as resolved and this result is
communicated to the agent.

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 30/94

While in general, the handling of resilient channels cannot be done by such
a contraction of several steps into a single one, the model in this case covers
all real executions if we assume that no honest party sends several requests
at a time and that the TTP processes requests sequentially.

Another challenge are the goals of fair exchange itself, namely when one
party has a valid contract, then the other one can eventually obtain one.
This is in fact a liveness property and cannot directly be expressed. We use
here the fact that every agent who does not obtain a contract will eventually
contact the trusted third party and get either an abort or resolve. Thus, it is
sufficient to check that we never come to a state where one party has a valid
contract and the other one has an abort for that contract; this is a safety
property.

Finally, we have also considered some “normal” protocols that do not
rely on databases, namely a simplified version of TLS, the famous flawed
NSPK and the fixed variant by Lowe (NSL) [49]. The reason is that these
protocols are standard examples. Also this demonstrates that we can use
databases of nonces or keys as an alternative way to describe the relevant
state-information of agents. For NSPK and NSL we use confidential channels
instead of public-key encryption.

The experimental results demonstrate that our abstraction approach is
feasible for a variety of verification problems of security protocols and web
services.

2.7 Concluding Remarks
The abstraction and over-approximation of protocols and web services by a
set of Horn clauses is a very successful method in practice [17, 25, 23, 61, 16].
In contrast to classical model-checking approaches, this kind of over-
approximation does not suffer from the usual interleaving problems and
can verify protocols for an unbounded number of sessions. The technique
has however limitations for protocols and web services that are based on
databases of keys, contracts, or even access rights, where revocation is pos-
sible, so that the set of true facts does not monotonically grow with the
transitions.

We present a new way of abstraction in the spirit of the Horn clauses
approach that can handle such databases and thus broadens the scope of
this abstraction method. The abstraction of data we propose is based on the
membership of the data in the databases. The updating of the databases re-
quires also an update of the abstraction of the data which we can declaratively
express with a new form of rule we have introduced, the term implication
rule. We show how to encode this rule into standard Horn clauses. As a

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 31/94

consequence we can use with ProVerif an existing tool from the abstraction
community, and even the general purpose first-order theorem prover SPASS.
The SEVECOM and ASW examples show that our method is feasible for
modeling complex real-world systems with databases and APIs that, for rea-
sons of their non-monotonic behavior, were previously out of the scope of the
standard abstraction-based methods. While the AIF-library is still small,
this suggest that our method is practically feasible to tackle exactly what is
missing for the verification of more complex cryptographic systems.

[60] considers an abstraction of keys in an API by attributes; this has some
similarity with our set-membership abstraction. However, the attributes in
[60] are static (i.e. set memberships cannot change).

Our new language AIF gives a convenient way of writing specifications in
an un-abstracted form. Still, AIF is too low-level to be used by a protocol
or web service designer. We thus plan as part of future work to connect
more high-level languages. Also we plan to build a tool with native support
for the term-implication rules and for other improvements specific to our
approach. Further, the approach is currently limited to a fixed number N
of sets; we plan to investigate how we can avoid this limitation. Another
interesting question we want to consider is the relation of our approach to
two quite different approaches, namely static analysis [21] and type-based
analysis [15], which, besides all differences, show some similarities with our
approach.

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 32/94

3 Encoding security-policy clauses
A security-sensitive service, e.g. specified in ASLan++, can be decomposed
into the communication and the policy levels: security protocols executed by
the service constitute the communication level, while the policy engine that
regulates the behaviors of the service constitutes the policy level. The sep-
aration between the communication and policy levels is a useful abstraction
for better understanding each of these levels.

For deciding reachability in security protocols (i.e. the communication
level), it is assumed that the attacker is in direct control of the communi-
cation media, i.e. messages are passed through the attacker. The message
composition capabilities of the attacker often reflect the Dolev-Yao threat
model [39]. For deciding reachability in security-sensitive services, we need
to also take the policy engines of services into account. Towards a seamless
decision algorithm which accounts for both the communication and policy
levels of services, we propose an encoding that shows that (a fragment of)
policy level computations of services can be seen as message derivations in the
Dolev-Yao attacker model. Then, intuitively, the attacker and all the services
would be equipped with the reasoning power of the Dolev-Yao model, which
is well understood and comes with decision algorithms for reachability. The
encoding would thus benefit us in two ways: (1) it simplifies the decidability
proofs as it builds upon the decidable Dolev-Yao threat model, and (2) it
allows us to use (with minor modifications) the existing tools which have
been originally developed for verifying security protocols in order to decide
reachability in security-sensitive services.

Note that decision algorithms for correctness of security protocols and
policy engines have been mostly developed in isolation. For instance, it
has been shown that the secrecy problem is decidable for security protocols
with a bounded number of sessions [56, 51]. For these results, the local
computational power of the processes is limited to pattern matching, hence
not fully accounting for authorization policies of the participants. Likewise,
(un)decidability results for the safety problem in the HRU access control
matrix model, and authorization logics such as [37, 14, 43] abstract away
communication level events and their effects on policy level decisions. In
contrast, we aim towards a decision algorithm for reachability which takes the
communication and policy levels into account, and also covers the interface
between them.

In this section, we focus on a fragment of policies in which the policies
of services are expressed in terms of trust application and trust delegation
rules à la DKAL [43, 44], and can also express typical RBAC models with
role hierarchy. The trust application and trust delegation rules are the core

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 33/94

of many authorization logics [37, 14, 43, 44]. Informally, they state that

Trust application: If Alice trusts Bob on statement f , and Bob says f ,
then Alice believes f holds.

Trust delegation: If Alice trusts Bob on statement f , then she trusts Bob
also on delegating the right to state f to others, e.g. to Charley.

Trust delegation is an important mechanism to provide resilience and flexi-
bility in distributed systems. In practice, however, for a given application,
trust delegation may, or may not, be allowed. The results presented here can
be adapted to exclude (transitive) trust delegation, if desired.

3.1 Preliminaries
A signature is a tuple (Σ,V ,P), where Σ is a countable set of functions, V
is a countable set of variables, P is a nonempty finite set of predicates, and
these three sets are pairwise disjoint. We use capital letters A,B, . . . to refer
to the elements of V . The free term algebra induced by Σ, with variables V , is
denoted TΣ(V). Amessage is an element of TΣ(∅), i.e. a ground term. The set of
atoms AΣ(V) is defined as {p(t1, · · · , tn) | p ∈ P , ti ∈ TΣ(V), with arity of p =
n}. The total function var : TΣ(V) ∪ AΣ(V) → 2V returns the set of variables
appearing in a term or an atom. A fact is an atom with no variables.

Let s be a finite set of facts, and I be a finite set of Horn clauses; a
Horn clause is of the form a ← a1, · · · , an, with n ≥ 0, and a, a1, · · · , an
being atoms. The closure of s under I, denoted dseI , is the smallest set
that contains s and moreover ∀(a ← a1, · · · , an) ∈ I.∀σ. a1σ, · · · , anσ ∈
dseI =⇒ aσ ∈ dseI , where σ is a total (grounding) substitution function for
the Horn clause a ← a1, · · · , an; that is σ : (var(a)⋃1≤i≤n var(ai)) → TΣ(∅).
The existence of dseI follows immediately from Knaster-Tarski’s fixed point
theorem.

The policy engine of a service is a pair (Ω, I), where Ω is a finite set of
facts, called the policy statements, and I is a finite set of Horn clauses, called
the intensional knowledge of the service. A fact f is derived in the policy
engine (Ω, I) iff f ∈ dIeΩ.

3.2 Policy engines and message terms
We introduce the notion of infons, which we borrow from DKAL [43, 44].
Infons are pieces of information, e.g. can_read(bob, file12) stipulating that
Bob can read a certain file12 . An infon does not admit a truth value, i.e.
it is never false or true. Instead, if the policy engine of a service, say Alice,

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 34/94

derives the predicate knows(can_read(bob, file12)), then Alice “knows” that
Bob may read this file, and may thus grant him read access to file12 . Note
that “knows” in this context, and also in DKAL, is a predicate symbol and
not a modality as in logics of knowledge. In fact, “knows” here is closer to
the notion of belief rather than knowledge, in epistemic terms.

Infons are different from predicates (i.e. policy statements) in that they
are constructed by applying infon constructors to message terms and other
infons. Below, we assume that in any signature (Σ,V ,P), the set Σ can be
partitioned into Σmsg and Σinfon, so that Σinfon is the set of infon constructor
functions, and Σmsg is the set of message constructor functions. The set of
infons, referred to as Infons, is formally defined as the smallest set satisfying
the following property: if t1, · · · , tn ∈ TΣmsg(V) ∪ Infons and f ∈ Σinfon with
arity of f being n, then f(t1, · · · , tn) ∈ Infons. Note that Infons∩TΣmsg(V) =
∅; in particular messages are not infons.

Below, we assume that for services the policy statements (i.e. the inhabi-
tants of the policy engines) are predicates over Infons. That is, the knowledge
of a service ranges over pieces of information.

All the signatures (Σ,V ,P) appearing in the rest of this section are as-
sumed to satisfy the following properties:

• Σ = Σmsg t Σinfon where: 3

– A finite subset of constants in Σmsg, denoted by Agents, represents
the set of the names of the participating services. Intuitively, each
service has a name; the names of the services are collected in the
set Agents.

– Apart from nullary functions (i.e. constants), Σmsg only contains
the functions {·}·, {| · |}·, sig(·, ·), pk(·), h(·), (·, ·). These repre-
sent respectively asymmetric and symmetric encryption, digital
signature, public key constructor 4, hash and pairing functions,
interpreted as usual. We may write x, y for the pair (x, y), when
confusion is unlikely.

– Σinfon contains in particular the functions θ(·, ·) and σ(·, ·). These
intuitively stand for “trusted on” and “said”, respectively, with
θ, σ : Agents × Infons → Infons

3Disjoint union of two sets is denoted by t.
4Intuitively, one (or more) public key is attributed to each element of Agents. The

public keys are known to everyone – to the attacker in particular. Using the public key
of a ∈ Agents one can encrypt messages for a and can verify the authenticity of the
messages signed by a. See Deliverable D2.3 [8] for further explanations.

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 35/94

• P = {K}, with K being a unary predicate. Intuitively, K stands for
“knows”.

Below, we introduce a class of policy engines, called the A1 fragment. The
A1 fragment is the target of the encoding that we present in § 3.3. The policy
engines in A1 are equipped with two designated infons to model “said” and
“trusted on”. These infons are respectively denoted by σ and θ, as mentioned
above. Intuitively, σ(a, x) states that a said x, while θ(a, x) states that a is
trusted on x. Trust delegation and trust application are the only rules which
(relate, and) allow reasoning about σ and θ in the A1 fragment. A policy
engine in the A1 fragment may however have other rules for manipulating
infon constructors different from σ and θ. We require that these rules are
“acyclic”. These notions are formally defined below.

Definition 10 [Fragment A1] Fragment A1, defined over the signa-
ture (Σ,V ,P), contains all policy engines (Ω, I) that satisfy the following
syntactical conditions:

• Ω is a finite set of ground atoms of the form K(i), with i ∈ Infons.

• I includes the TA and TD rules, respectively represented by

K(X)← K(θ(A,X)),K(σ(A,X)), and
K(θ(A, θ(B,X)))← K(θ(A,X)).

The set of all the other rules in I constitutes a type-1 theory, as defined
below, and σ and θ do not appear in this set.

We define type-1 theories in order to extend the policies of services beyond
TA and TD. Intuitively, type-1 theories contain the rules which a policy
engine uses for reasoning about infon constructors different from σ and θ.
Type-1 theories can, e.g., express typical RBAC systems with role hierarchy.

Definition 11 (Type-1 theories) A finite set of Horn clauses T , defined
over signature (Σ,V ,P), with Σ = Σmsg tΣinfon, is called a type-1 theory iff

(a) All clauses in T have the form p(t) ← p1(t1), · · · , p`(t`), where
p, p1, · · · , p` ∈ P, and t, t1, · · · , t` ∈ Infons.

(b) For all a← a1, · · · , a` in T ,
⋃
i∈{1,··· ,`} var(ai) ⊆ var(a).

(c) The infon dependency graph of T is acyclic. The infon dependency graph
of T is a directed graph defined by the pair (Σinfon,Edges) with (f, g) ∈
Edges iff there exists a Horn clause in T using g in its head and f in its
body.

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 36/94

can_read

can_write
classified

public

admin

user

Figure 3: Dependency graph, example 3.1.

We remark that neither TA nor TD fall into type-1 theories, due to condi-
tions (b) and (c) in Definition 11, respectively.

Example 3.1 Consider a file server which implements an RBAC system
with two roles, user and admin. Users may read any public file, admins
may read any classified file, and admins may also write to any file. Admins
inherit all the rights attributed to users. The following monadic Horn theory,
describing this RBAC system, is indeed a type-1 theory.

K(user(A)) ← K(admin(A))
K(can_read(A,F)) ← K(user(A)),K(public(F))
K(can_read(A,F)) ← K(admin(A)),K(classified(F))
K(can_write(A,F)) ← K(admin(A))

Here Σmsg contains the set of identities of involved ser-
vices, and names of files, while P = {K}, and Σinfon =
{user , admin, public, classified, can_read, can_write} with obvious ari-
ties. The infon dependency graph for this theory, shown in figure 3, is
acyclic.

The following example shows how certain policies on e-health records can
be encoded in type-1.

Example 3.2 In a hospital, each patient is associated with two different
sorts of e-health records (e-HR): normal, and emergency. A physician can
access all e-HRs of her patients. A nurse can access normal e-HRs of his
patients. Nurses can also access emergency e-HRs of any patient, if they
belong to the emergency ward “ew”. The e-HR server of the hospital manages
access to e-HRs. The following type-1 theory formalizes these policies for the
e-HR server.

K(can_access(A, n(P))) ← K(rel(A,P)),K(phy(A))
K(can_access(A, e(P))) ← K(rel(A,P)),K(phy(A))
K(can_access(A, n(P))) ← K(rel(A,P)),K(nurse(A))
K(can_access(A, e(P))) ← K(ew(A)),K(nurse(A))

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 37/94

Here Σmsg contains the set of identities of physicians, nurses and pa-
tients, and two designated functions n and e which return respectively the
normal and emergency e-HRs of a given patient. Moreover, Σinfon =
{phy, nurse, can_access, rel, ew} with obvious arities, and P = {K}. For
physician or nurse A and patient P , rel(A,P) denotes that P is a patient
of A.

3.3 Encoding policy level computations
Below, we suppress the predicate symbol K from facts, and work directly
with infons; indeed K is the only predicate symbol in A1 policy engines.
The encoding consists of two functions: ζ which maps infons to TΣ(V), and E
which maps infons to disjunctions of infons (defined below). To simplify
the presentation, we start with an initial encoding for trust application only.
This encoding is then extended to cover trust delegation and type-1 theories.

We assume the usual capabilities of the Dolev-Yao attacker in compos-
ing and decomposing messages. These capabilities are formalized, e.g., in
Deliverable D2.3 [8].

3.3.1 TA only.

We recursively define the encoding for infon i:

ζ(i) =

{|ζ(X), sig(Ā, ζ(X))|}ζ(θ(A,X)) if i = σ(A,X)
θ(Ā, ζ(X)) if i = θ(A,X)
i otherwise

where ·̄ : Agents → Agents is a bijection which associates a unique name
to each element of Agents. Elements of Agents belong to TΣmsg(∅), and are
defined solely for the encoding function ζ, i.e. they do not appear in the
policy engines.

Here, the encoding of infon σ(a, x) is the cipher-text {|x, sig(ā, x)|}θ(ā,x)
from which the infon x (i.e. what service a said) can be obtained using the
decryption rule (of the Dolev-Yao model) only if the key θ(ā, x) (i.e. a is
trusted on x) is obtained first. This indicates that if TA is applicable on
a set of facts at the policy level, then the symmetric decryption rule of the
Dolev-Yao inference system, i.e.

{|X|}K K

X
Sdec

is applicable to the terms resulting from the encoding.

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 38/94

Intuitively, the role of the signature sig is to ensure that terms of the
form {|x, sig(ā, x)|}θ(ā,x) can be constructed using the Dolev-Yao rules only
if a corresponding σ(a, x) can be derived in the policy level. This is based
on the assumption that the attacker does not know the private keys of ā for
any a ∈ Agents.

3.3.2 TA, TD and type-1 theories

In order to include TD and type-1 theories in the encoding, we define an
expansion function E that for any atom returns a “guard”. A guard is of the
form g1 ∨ · · · ∨ gn, where g1, · · · , gn are finite sets of atoms. We write gi ∈v g
if g = g1 ∨ · · · ∨ gi ∨ · · · ∨ gn, with n ≥ 1. Intuitively, a guard g is interpreted
as the “disjunction” of the “conjunctions” of the atoms in each gi ∈v g.

We motivate the expansion function via a simple example. Suppose
the fact θ(a, i) is present in the policy engine of a service, and the query
θ(a, θ(b, i)) is to be evaluated. The TD rule implies that the query can be de-
rived, while there is no corresponding inference tree (in the Dolev-Yao model)
for ζ(θ(a, θ(b, i))), given ζ(θ(a, i)). The set of infons which yield θ(a, θ(b, i))
via applying only the TD rule is however finite. This finite set of infons can be
seen as a guard, namely {θ(a, θ(b, i))}∨{θ(a, i)}. The fact that θ(a, i) yields
θ(a, θ(b, i)) in the policy engine can then be reflected in the Dolev-Yao model
as: either ζ(θ(a, θ(b, i))) or ζ(θ(a, i)) (or both) are obtained from ζ(θ(a, i)).

The expansion EP (Q, i) is defined for finite sets of Horn clauses P and Q,
and infon i:

EP (∅, i) = {i}
EP ({r ← r1, . . . , r`} tQ′, i) ={

EP (Q′, i) ∨
(
EP (P, r1ρ) ∪ · · · ∪ EP (P, r`ρ)

)
if i = rρ

EP (Q′, i) if ¬∃ρ. i = rρ

where ∪ distributes over ∨, i.e. S∪(S1∨S2) = (S1∨S2)∪S = (S1∪S)∨(S2∪S).
Here Q is a support theory used only to ensure that the expansion of any
infon results in a finite set; see theorem 4 below.

Theorem 4 Let P = P 1 ∪ {TD}, with P 1 being the type-1 theory in an A1
policy engine. Then, EP (P, i) is a finite set for any infon i.

Proof. Immediate, since the dependency graph of P 1 is acyclic, P 1 does
not contain θ, and the Horn clause which encodes TD strictly decreases the
number of θ functions. 2

We write E(i) for EP (P, i), when P is clear from the context.

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 39/94

Example 3.3 Consider the infon i = can_read(a, file) along with the type-1
theory of example 3.1. Then,

E(i) = {user(a), public(file)} ∨ {admin(a), public(file)}∨
{admin(a), classified(file)} ∨ {can_read(a, file)}

Write E(i) = g1 ∨ g2 ∨ g3 ∨ g4, with g1 = {user(a), public(file)}, etc. The
guard E(i) is interpreted as: can_read(a, file) holds, i.e. a can read file ac-
cording to the RBAC system of example 3.1, iff either of the following con-
ditions hold: [g1] user(a) and public(file) are known, or [g2] admin(a) and
public(file) are known, or [g3] admin(a) and classified(file) are known, or [g4]
can_read(a, file) is known via a policy inference outside the RBAC system.
Similarly, E(can_write(a, file)) = {admin(a)} ∨ {can_write(a, file)}.

We refine the function ζ (introduced above) by incorporating the ex-
pansion function E into ζ. This intuitively ensures that ζ(i), for infon i,
is obtainable from ζ(σ(a, i)) if there exist at least one g ∈v E(θ(a, i)) such
that ζ(g) can be obtained first. Hence, we define:

ζ(i)=

{|ζ(X), sig(Ā, ζ(X))|}ζ(EP (P,θ(A,X))) if i = σ(A,X)
θ(Ā, ζ(X)) if i = θ(A,X)
i otherwise

Here, {|x|}k1∨···∨k` stands for the tuple {|x|}k1 , · · · , {|x|}k` , function ζ distributes
over ∨, and P = P 1 ∪ {TD} with P 1 being the type-1 theory at hand. For a
finite set of infons g, ζ(g) is defined as the concatenation of ζ(i), for all i ∈ g.
Note that elements of EP (P, θ(A,X)) in the definition of ζ are singletons.
This is because in any A1 policy engine, EP (P, θ(a, i)) = E{TD}({TD}, θ(a, i)),
as θ does not appear in P 1.

3.3.3 Correctness of the encoding

The following theorem ensures that if a fact is derivable in the logic program
of an A1 policy engine, then its corresponding encoded term can be derived
using the Dolev-Yao inference rules, and vice versa.

We consider the standard Dolev-Yao capabilities for the term alge-
bra TΣ(V), which comprises both infon and message constructors. That is,
the infon constructors are seen as uninterpreted functions, while message
constructors (e.g. {|·|}·) have their standard meaning in the Dolev-Yao model.
We write T ` u for u is derivable from a set of terms T with the standard
Dolev-Yao inference rules as formalized, e.g. [51].

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 40/94

Theorem 5 (Correctness) Let P be the intensional knowledge of an A1
policy engine, with P = {TA} ∪ Q, Q = {TD} ∪ P 1 and P 1 being a type-1
theory. For any (ground) infon f and finite set of (ground) infons G:

K(f) ∈ dK(G)eP ⇐⇒ ∃g ∈v EQ(Q, f). ζ(G) ` ζ(g)

where for G = {f1, · · · , f`}, K(G) stands for {K(f1), · · · ,K(f`)}.

Proof. Fix the policy set P . We write G f for K(f) ∈ dK(G)eP , sup-
press K when confusion is unlikely, and write E(f) for EQ(Q, f). Below, we
talk about proof trees for f , given G. The correspondence between finding
proof trees and computing closures is immediate. The proof is split into two
directions.

⇒ We use structural induction on proof trees for f , given G. If f ∈ G, then
the implication is trivial. Otherwise, consider the last rule applied in
the proof tree:

• (TA) Then G σ(a, f), θ(a, f), for some a ∈ Agents. By induc-
tion hypotheses,

∃s ∈v E(σ(a, f)), t ∈v E(θ(a, f)). ζ(G) ` ζ(s), ζ(t).

Observe that s = σ(a, f). The term ζ(σ(a, f)) is the tu-
ple {| ζ(f), sig(a, ζ(f)) |}E(θ(a,f)). Since t ∈v E(θ(a, f)), through
unpairing, we obtain the cipher-text {| ζ(f), sig(a, ζ(f)) |}ζ(t)
from ζ(σ(a, f)). From ζ(G) ` ζ(t), by applying the Sdec rule
and unpairing we get ζ(G) ` ζ(f). Clearly f ∈v E(f).

• (TD) Then f = θ(a, θ(b, i)) for some a, b ∈ Agents and i ∈
Infons, and G θ(a, i). By induction hypotheses, ∃t ∈v
E(θ(a, i)). ζ(G) ` ζ(t). Now, the claim follows since for any
infon t, t ∈v E(θ(a, i)) implies t ∈v E(θ(a, θ(b, i))).

• (Type-1) Let R = r ← r1, . . . , r` ∈ P 1 be the last rule applied.
Then f = rρ and G r1ρ, · · · , r`ρ, for some grounding substitu-
tion ρ (cf. condition (b) in definition 11). By induction hypothe-
ses, ∃r′1 ∈v E(r1ρ), · · · , r′` ∈v E(r`ρ). ζ(G) ` ζ(r′1), · · · , ζ(r′`). By
definition of E , {r′1, · · · , r′`} ∈v E(f), hence follows the claim.

⇐ First, we claim that ζ(G) ` ζ(g) implies G g. Notice that the ζ(g) is
either of the form {|ζ(x), sig(a, ζ(x))|}E(θ(a,x)), or of the form i(x), with
i being an infon constructor. The claim follows by case analysis on the
Dolev-Yao attacker’s message (de)composition abilities. In particular,

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 41/94

note that (1) to fabricate {|ζ(x), sig(a, ζ(x))|}E(θ(a,x)), the attacker needs
to construct sig(a, ζ(x)), which is impossible as the attacker does not
own the private key for any ā ∈ Agents, and (2) infon constructors are
uninterpreted functions in the Dolev-Yao model, i.e. they can neither
be applied by the attacker, nor their application can be deconstructed.
The other cases are straightforward; we thus omit them here. Finally,
notice that if G g and g ∈v E(f), then G f ; hence follows the
claim.

This completes our proof. 2

To conclude this section, note that the purpose of the proposed encod-
ing is to replace the logic programs of services with the derivation rules of
the Dolev-Yao model. Theorems 4 and 5 indicate that the computations in
any A1 policy engine can be translated to finitely many proof searches in the
Dolev-Yao attacker inference model, using the encoding introduced above.

As a result, intuitively, the attacker and all the services would be equipped
with the reasoning power of the Dolev-Yao model, which is well understood
and comes with decision algorithms for reachability. The encoding thus paves
the way towards deciding reachability in security-sensitive services while ac-
counting for both the communication and policy levels of services.

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 42/94

4 One-step Transition Decision Procedures

4.1 Logical background
We consider a finite set F of function symbols and a function α : F → N
called the signature function. Given a symbol f ∈ F the value α(f) is called
the arity of f . Given a signature α, an α-algebra A is a pair (MA, FA) with a
non-empty setMA and a finite set of functions FA such that for every function
symbol f in the domain of α there exists in FA a function fA : Mα(f)

A →MA.
Given a signature α of domain F , a denumerable set of constants C and

a denumerable set of variables X , the free α-algebra generated by X ∪ C is
called the set of terms over F and is denoted TC(F ,X). It is the least set
T that contains X , C, and such that for every f ∈ F and every sequence
t1, . . . , tα(f) of elements of T we have f(t1, . . . , tα(f)) ∈ T .

As usual we consider terms built with function symbols (with arity) in a
first-order signature Ft over a denumerable set of constants (denoted C) and
a denumerable set of variables (denoted X). A term in which no variable
occurs is ground. In the rest of this section any expression defined over
terms (sets, states, clauses, etc.) in which only ground terms occur will also
be called ground. Given a term t ∈ TC(F ,X) we denote Var(t) the set of
variables (i.e. elements of X) that occur in t. If Var(t) = ∅ we say that the
term t is ground. We denote TC(F) the set of ground terms.

We also assume that we are given a finite set Fp of relation symbols and
an arity application β : Fp → N. Each symbol fp ∈ Fp is interpreted as a
β(fp)-ary relation on the set of terms TC(F ,X). The set of facts is the set:{

fp(t1, . . . , tβ(fp)) | t1, . . . , tβ(fp) ∈ TC(F ,X)
}

A fact fp(t1, . . . , tβ(fp)) is ground if t1, . . . , tβ(fp) ∈ TC(F). A Possibly negated
fact is either a fact or the negation of a fact. A clause is a set of possibly
negated facts. It is ground if it is a set of possibly negated ground facts.
A clause is a Horn clause if it contains at most one fact. It is a definite
Horn clause if it contains exactly one fact. Definite Horn clauses are usually
written f ← Γ where Γ is the set of facts whose negation occurs in the
clause and f is the fact that occurs positively. If Γ = ∅ the clause is usually
identified with its positive fact.

A substitution σ is an idempotent mapping from X to TC(F ,X) such that
σ(x) 6= x only for a finite subset of X called the support of σ. A substitution
is ground if for every variable x in its support the term σ(x) is ground. Sub-
stitutions are extended homomorphically to terms, facts, possibly negated
facts and clauses. The application of a substitution will usually be denoted

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 43/94

in the postfix notation, e.g. tσ is the term t in which every variable x oc-
curring in the domain of σ is replaced by the term σ(x). The result of the
application of a substitution σ on a term, fact, possibly negated fact, or
clause is called an instance of the latter.

A set of atomsM is a model of a set of ground possibly negated facts s
if either a fact in s is also inM or a negated fact in s is not inM. It is the
model of a clause C if it is the model of every ground instance of C. It is the
model of a set of clause H if it is a model of every clause in H.

It is well-known that every set of Horn clauses is either inconsistent or
has a least model for inclusion. In the latter case this model is also the least
fixpoint obtained by computing the consequences of the subset of definite
Horn clauses. It is unique but may not be finite.

4.2 Logical model of ASLan
4.2.1 States and transitions in ASLan

A state is a set of ground possibly negated facts. Unlike clauses, which
represent disjunctions of facts, states represent conjunctions of facts. For the
formal treatment we thus identify a state s with a set of Horn clauses Hs

that each contains exactly one of the possibly negated facts in s.

Example 4.1 For instance, we associate to the state s = {q(x) · ¬p(x)} the
set of Horn clauses Hs defined as follows:

Hs =
{
q(s)← ∅
← p(x)

Given a state s and a set of Horn clauses H we denote dseH the least
model for inclusion of the set of Horn clauses H ∪Hs. A symbolic state is a
couple (M, C) where:

• M is a set of possibly negated facts;

• C is a conjunction of equalities and disequalities on terms.

A symbolic state is simple if the conjunction is over an empty set of equalities
and disequalities. Given a symbolic state s we denote Pos(l) the set of facts
occurring in s and Neg(s) the set of negated facts occurring in s.

A transition rule is a couple (l, r) denoted l⇒ r of symbolic states with:{
Var(r) ⊆ Var(Pos(l))
r = Pos(r)

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 44/94

In accordance with D2.1 ([9], pp. 28–29) we say that a transition rule l ⇒ r
with l = (M, C) is applicable for a set of Horn clauses H on a state s with the
ground substitution σ of support Var(Pos(l)) if for every ground substitution
σ′ of support Var(Neg(l)) \ Var(Pos(l)):

• for every fact f ∈ Pos(l) we have fσ ∈ dseH and for every negated fact
not(f) in Neg(l) we have fσσ′ /∈ dseH;

• σσ′ satisfies all the equalities and disequalities in C.

The result of the application of a transition rule l ⇒ r applicable on a state
s is the state s′ = (s \ Pos(l)σ) ∪ rσ. Given a set of transitions P we say
that a state s is an initial state whenever there exists in P a transition rule
∅ ⇒ s.

Example 4.2 Consider the specification S = (H,P) with:{
H = {p(x)← q(x)}
P = {∅ ⇒ p(a).q(a) , p(x).q(x)⇒ q(x)}

The state s = p(a).q(a) is an initial state. Applying the second transition
rule with the substitution {x 7→ a} yields a second state s′ = q(a). We note
that we have s′ 6= s even though dseH = ds′eH.

4.2.2 ASLan specifications

We can now define our model of ASLan specification.

Definition 12 A specification is a couple S = (H,P) where H is a finite
set of Horn clauses and P is a finite set of transition rules.

Given a specification S = (H,P) a S-execution is a sequence of states
s0, . . . , sn such that:

• s0 is an initial state;

• For i ∈ {1, . . . , n} there exists a transition rule in P from si−1 to si.

We note that the restriction on the variables in transition rules implies
that:

• An initial state is ground, i.e. contains no variables;

• Since the substitution σ with which the rule is applied must be ground,
all states in a S-trace are ground.

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 45/94

4.2.3 ASLan goals

The analysis of Web Services as conducted in the AVANTSSAR project con-
sists in proving that a given specification has a given property, which is
specified as a goal in ASLan. In the course of this project we have considered
three types of properties:

Reachability properties: as specified in [9] these are goals that are ex-
pressed by a transition s⇒ ∅ where s is a symbolic state representing
the interesting states;

LTL properties: goals may also be expressed by LTL formulas that are
evaluated on the possible traces of a specification. We leave the analysis
of these properties to D3.2;

Structural properties: in particular when considering the service synthe-
sis problem we have to consider goals that are evaluated against all the
possible executions of an ASLan specification. Though the ASLan lan-
guage does not currently provide a way to conveniently express these
properties we have analyzed them in a variety of settings.

In order to simplify the problem we consider in the rest of this section only
the reachability properties.

4.3 Relevant specifications
4.3.1 Web services and aspect-based programming

While Service Oriented Architectures aim at achieving reusability of software
components and agility—i.e. an easy adaptation to changes in the execu-
tion environment or in the policies applicable to the service—of complex
applications, other programming paradigms have been developed to ease the
development of these software components.

Though the AVANTSSAR project is uniquely concerned with the vali-
dation of the service interface and not of the underlying application, one
of these programming paradigm, aspect-based programming, is of particular
importance to us. Indeed the WS-* stack (SOAP, WSDL, WS-Policy, etc.)
is also based on aspects.

The core of the WS-* stack is the WSDL language that describes the
network interface, i.e. its different operations, the messages it sends and
receives, and the locations and protocols to employ to connect to it. This
“message” level is intimately intertwinedwith a workflow aspect. For instance

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 46/94

the definition of the send and receive operations in BPEL rely on the defini-
tion of a WSDL file, and the corresponding WSDL files include an extension
to support the notion of partners in BPEL.

As far as the AVANTSSAR project is concerned the main other aspect
that pertains to the security analysis of services is the policy aspect. Policies
can be attached at different points of a WSDL specification and alter the
meaning of the WSDL part of the specification. Depending on this alter-
ation we can distinguish between two types of policies. On the one hand,
message-level policies change the format of the messages acceptable or sent
by the service. On the other hand, access control policies do not change the
actual format of the messages but instead specify conditions on the payload
of messages abiding to this format under which a message can be accepted.

Our goal in this section is to formalize the distinction between these
different aspects in order to, firstly, justify the restriction of some of the
developed methods to only one of these aspects, and secondly, to be able to
provide conditions under which the security analysis of a set of services with
their policy can be conducted modularly in each of the different aspects.

Outline of the rest of this section. The setting we have adopted in
ASLan intends to use the set of Horn clauses in a specification S = (H,P)
to specify the intruder deduction rules and the access control policy of the
honest agents. But the same sets of clauses can also be employed to encode
Turing machines, or to simulate any kind of computation. In order to restrict
the analysis to the cases of matter to us we thus have to restrict the possible
sets of Horn clauses that may appear in a specification.

We consider two kinds of restrictions. The first one aims at defining rig-
orously what an access control policy is. We propose one possible definition
and prove that a consequence of it is that removing the access control pol-
icy does not reduce the possible executions of the services under scrutiny
(Proposition 1). While it permits us to define the class of clauses for which
we want to prove decision procedures this definition is not sufficient to prove
that one can reason modularly on the access control aspect of the specifi-
cation of Web Services. We thus propose a second restriction on admissible
sets of Horn clauses, and call the abiding sets of clauses well-formed, that in
contrast is purely technical and is based on prior works on modular reasoning
for reachability problems.

4.3.2 Separation of the different aspects

There is a discrepancy between the goal of the AVANTSSAR project, which
is to analyze the security of services on the one hand, and the expressiveness

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 47/94

of the ASLan language in which it is possible to express almost any kind of
specification.

A first step towards providing decision procedures is thus to identify which
subset of the possible, correct, ASLan specifications corresponds to the spec-
ification of a set of services. In doing so we will take a special care to
delineate, in these specifications, the part that pertains to the access control
policy of services, and how this access control aspect is woven into the rest
of the specification of the services. Our main guide to characterize access
control policies is that, as is mentioned above, that they restrict the possible
executions of a service, but never modify parts of the service that were not
introduced to model access control policies. To formalize this assumption
we need to introduce a few definitions. First we partition the facts in states
according to the aspect they are related to.

Existing Web Services standards separate the description of a service, of
its control flow and state, and of its access control policy in different files e.g.
written respectively in WSDL, BPEL4WS, and XACML. Accordingly we
define three aspects, namely the Web Service, the workflow and the access
control ones, that respectively represent the interaction between entities,
their internal states and computations, and their access control policies.

Example 4.3 In the standard translation from ASLan++ to ASLan the wf-
facts are the state and contains fact that represent the states of the honest
entities, the ws-facts are the iknows fact in the sense that they define the
messages sent and received by he honest entities, and the access control policy
facts would be among the additional facts. In the rest of this section we try
to be as independent as possible from this standard translation, keeping only
the iknows facts to denote the knowledge of the intruder.

Definition 13 We assume that the set of predicates Fp is partitioned into
three sets Fwf , Fws, and Fac modelling respectively workflow related facts,
Web Service related facts, and access control related facts.

Accordingly we say that a fact p(t1, . . . , tn) is a wf-fact (resp. a ws-fact, a
ac-fact) if p ∈ Fwf (resp. p ∈ Fws, p ∈ Fac).

It is now possible to specify rigorously how the access control aspect
should be woven into the other parts of the application. Given a set of
aspects A ⊆ {wf,ws, ac} the function πA, the projection to the A-facts, is
the mapping from states to states such that:

πA(s) = {f ∈ s | f is an a-fact and a ∈ A}

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 48/94

We extend this projection to rules and specifications as follows. Given a
specification S = (H,P) and a set of aspects A ⊆ {wf,ws, ac} let:{

πA(H) = {f ← Γ ∈ H | f is a a-fact and a ∈ A}
πA(P) = {πA(l)⇒ πA(r) | l⇒ r ∈ P}

Given a specification S and a set of aspects A we define the A-version of S
to be the specification πA(S) = (πA(H), πA(P)).

4.3.3 Web Service specifications (WS specifications)

We are now equipped to define precisely the class of ASLan specification that
pertains to the modelling of Web Services.

Definition 14 (WS-specifications) We say that a specification (H,P) is a
Web Service specification whenever:

wf-facts restrictions: We have

(wfH) πwf (H) = ∅,
(wfT) for every transition rule l ⇒ r ∈ P we have Var(πwf (r)) ⊆

Var(Pos(πws(l))) ∪ Var(Pos(πwf (l)));

ac-facts restrictions:

(acH) For each clause f ← Γ ∈ H if f is a ws-fact then no fact in Γ is
an ac-fact

(acT) For each transition rule l ⇒ r ∈ P either Var(πac(l)) ⊆
Var(Pos(πws(l)))∪Var(Pos(πwf (l))) or π{wf,ws}(l) = π{wf,ws}(r) =
∅.

This definition is the formal translation of the following hypotheses:

(wfH): The constraint πwf (H) = ∅ implies that the internal computations of
the services are not encoded in Horn clauses;

(wfT): With the exception of nonce creation, for which we assume the variables
quantified existentially are skolemized when a transition rule is applied,
a stateful service should only operate on data it has initially access to or
on data received. In ASLan specifications this leads to the restriction
Var(Pos(πwf (r))) ⊆ Var(Pos(πws(l)))∪Var(Pos(πwf (l))). Another way
to express the restriction is to say that once all ac-facts are removed
from transition rules we still have regular transition rules;

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 49/94

(acH): The access control rules may limit the possible execution of the services
by changing the truth value of ac-facts, but do not change the truth
value of ws- or wf-facts. This property is stated formally in Proposi-
tion 1;

(acT): We have to model that an entity queries the access control system by
forming a request from the data it has access to and that the access
control is stateful and may evolve independently from the applications,
as is the case e.g. in delegation and revocation. The first condition
permits one to express that the entity takes the access control decision
into account, while the second condition implies that only access con-
trol related objects are affected by a transition, thereby modelling an
evolution of the access control system.

4.4 Reachability problems
4.4.1 Definition

In order to simplify the presentation we consider only ASLan goals that
are defined by attack states as described in Deliverable 2.1 ([9], p. 29). An
attack state s is represented in ASLan with a transition rule s⇒ s.attack.
The security property is violated whenever there exists an execution of the
services in which this transition rule is fired.

As a result, the security analysis of a specification amounts to deciding
whether the transition rules in a specification—including the transition rules
encoding security property violations—can be applied in a given order.

ReachabilityH(P , (li ⇒ ri)1≤i≤n)
Input: A specification S = (H,P) and a finite sequence (li ⇒

ri)1≤i≤n of rules of P .
Output: Sat if there exists a substitution σ and a S-trace

(si)0≤i≤n with s0 = ∅ such that for 1 ≤ i ≤ n the instance
liσ ⇒ riσ is a transition from si−1 to si.

The AVANTSSAR tools can be constrained to solve a typed version of
this problem in which each variable can only be instantiated by a finite
number of ground terms. Tools such as SATMC solve this adapted problem
by considering all the possible ground instances of the transition rules. This
eager instantiation reduces the problem to one in which ground instances of
the transition rules are given.

GroundReachabilityH(P , (li ⇒ ri)1≤i≤n)

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 50/94

Input: A specification S = (H,P) and a sequence (li ⇒ ri)1≤i≤n
of transition rules that are ground instances of rules in P .

Output: Sat if there exists a S-trace (si)0≤i≤n with s0 = ∅ such
that for 1 ≤ i ≤ n the transition rule li ⇒ ri is a transition
from si−1 to si.

We define in the rest of this section properties of the set of Horn clausesH
such that the reachability and ground reachability problems for specifications
(H,P) are decidable.

4.4.2 Reachability problems for WS-specifications

In Subsection 4.3.3 we have defined Web Service specifications. At that point
we have informally justified that the given definitions did reflect the proper-
ties of access control policies w.r.t. the other aspects. Next proposition gives
a formal meaning to that assertion. Though we may have over-constrained
the Web Service specifications we believe this setting satisfactorily captures
how the different aspects are woven into Web Services.

Proposition 1 Let S = (H,P) be a Web Service specification. If s0, . . . , sn
is a S-trace then π{wf,ws}(s0), . . . , π{wf,ws}(sn) is a π{wf,ws}(S)-trace.

Proof. By induction on n. The base case n = 0 is trivial. As-
sume the proposition holds for any S-trace of length bounded by n and
consider a S-trace s0, . . . , sn+1. By induction we already know that
π{wf,ws}(s0), . . . , π{wf,ws}(sn) is a π{wf,ws}(S)-trace. If the transition rule
l ⇒ r applied on sn to obtain sn+1 is such that π{wf,ws}(l) = ∅ then by
the point (acT) of Definition 14 we also have π{wf,ws}(r) = ∅, and thus
π{wf,ws}(sn+1) = π{wf,ws}(sn) by definition of the transition relation. Thus
one can extend the trace with a stutter.

Thus to prove the theorem it suffices to prove that a wf- or ws-fact f is
in dsneH if, and only if, it is in

⌈
π{wf,ws}(sn)

⌉π{wf,ws}(H)
, i.e.:

π{wf,ws}(dsneH) = π{wf,ws}(
⌈
π{wf,ws}(sn)

⌉π{wf,ws}(H)
)

By definition of Web Service specifications, point (acH), Horn clauses whose
head is a ws-fact have only wf- or ws-facts in their body, and by point (wfH)
there are no Horn clauses whose head is a wf-fact. We thus have:

π{wf,ws}(H) ⊆ H

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 51/94

Together with the trivial inclusion π{wf,ws}(sn) ⊆ sn this immediately yields
the inclusion

⌈
π{wf,ws}(sn)

⌉π{wf,ws}(H)
⊆ π{wf,ws}(dsneH).

To prove the converse inclusion we consider a well-founded total ordering
< on the facts in dsneH such that for each fact f in this set either f is
minimal for the ordering and in s or there exists facts f1, . . . , fk such that:{

fi < f for 1 ≤ i ≤ k
{f1, . . . , fk} → f is an instance of a clause in H

This ordering is well defined given our closed world assumption, and is
well-founded since the closure is defined as a least fix point. By contra-
diction if π{wf,ws}(dsneH) 6⊆

⌈
π{wf,ws}(sn)

⌉π{wf,ws}(H)
the set π{wf,ws}(snH) \

π{wf,ws}(sn)π{wf,ws}(H) is not empty. Thus it has a minimal element f for the
well-founded ordering <. If this element is a minimal element for the order-
ing, i.e. f ∈ sn, we also have f ∈ π{wf,ws}(sn), a contradiction. Thus f is
not minimal, and thus cannot be a wf-fact.

Thus f must be a ws-fact which is not minimal in dsneH. Thus by defini-
tion of the ordering < there exists facts f1, . . . , fk such that {f1, . . . , fk} → f
is the instance of a Horn clause in H. Since this is a Web Service specifi-
cation and the head of this clause is not an ac-fact it is also in π{wf,ws}(H).
Since f /∈

⌈
π{wf,ws}(sn)

⌉π{wf,ws}(H)
at least one of these facts—w.l.o.g. let us

assume this is f1—is not in
⌈
π{wf,ws}(sn)

⌉π{wf,ws}(H)
. Since it is a wf- or ws-

fact we note that f1 is in π{wf,ws}(dsneH). This contradicts the minimality of
f , and thus the non-emptiness of π{wf,ws}(dsneH) \

⌈
π{wf,ws}(sn)

⌉π{wf,ws}(H)
.

4.4.3 The case of ground reachability problems

Before proceeding to the description of more complex procedures let us first
consider the case of ground reachability problems. We recall that solving this
problem is sufficient for the typed analysis of Web Services. Let S = (H,P)
be a specification such that every rule in P is ground.

Theorem 6 (Reduction of ground reachability to ground entailment) If
the ground entailment problem for the theory H is decidable then
GroundReachabilityH(P , (li ⇒ ri)1≤i≤n) is decidable.

Proof sketch. The assumption that the ground entailment problem for
H is decidable means exactly that one can decide whether a ground clause
Γ → ∆ is a consequence of H. Noting that the ground rule li ⇒ ri can be

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 52/94

applied on the ground state s if, and only if, every ground fact f in li \ s is a
logical consequence of the set of facts F in s and of the theory H. Deciding
whether this is the case is the same as deciding whether H entails the ground
clause F → f .

We give in [30] a criterion on H ensuring the decidability of the ground
entailment problems. Let us note however that other criteria can be found
in the literature [10].

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 53/94

5 Process equivalence

5.1 Introduction
Context. Well-known stories about flaw discoveries have revealed that pro-
tocols and services may be subject to unexpected and undesirable behaviours
under malevolent attacker actions. Formal analysis is therefore mandatory
for gaining the level of confidence required in critical applications. Formal
methods and related tools have proved to be successful to some extent for
this task. But they are limited in expressiveness since in most cases the focus
has been on the resolution of reachability problems, and as a consequence
very few effective procedures consider the more general case of equivalence
properties useful for modelling many important security properties.

For instance, the fundamental compositionality results on cryptographic
protocols by Canetti et al. (e.g., [28, 48]) require to prove that a process is
equivalent to an ideal abstraction of it in every environment. Hence deciding
equivalence of processes is mandatory to obtain automated compositionality
proofs.

We give in this section an alternative, and we believe simpler, proof of a
deep result by Mathieu Baudet [13], namely that the equivalence of symbolic
constraints is decidable for deduction systems on a finite signature modulo a
subterm convergent equational theory.

Motivation. Observational equivalence is a crucial notion for specifying
security properties such as anonymity or secrecy of a ballot in vote proto-
cols [36]. For instance, observational equivalence can justify that there is
no action of an attacker that makes distinguishable two protocol executions
with different identities or vote values.

To be of effective use the notion of observational equivalence should be
considered on processes modeling cryptographic protocols. We consider in
this section finite processes called symbolic derivations that represent any
(combination of) honest agents. One easily sees that these symbolic deriva-
tions encode plain processes of the applied π-calculus without replication
nor branching (“else branches”). Since we consider only sequential attacker
derivations, our notion of symbolic equivalence corresponds to trace equiva-
lence of simple processes without branch nor replication of [35]. In the latter
paper the authors proved that trace and observational equivalence coincide
on this class of processes.

The only decidability result on the equivalence of symbolic traces we are
aware of is the coNP decision procedure for S-equivalence for the class of
subterm deduction systems and was given by Baudet [12, 13]. We propose

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 54/94

an alternative decision procedure for the same class of protocols that can
be handled by Baudet. The complexity is the same for the subclass COM-
PILED_EQ of protocols that can be obtained by compiling Alice-and-Bob
specifications. A more efficient procedure is presented in [29] when one con-
siders only the Dolev-Yao deduction system. In spite of the relevance of this
problem for the analysis of e.g., voting protocols, we are not aware of any
extension of Baudet’s results to other classes of deduction systems.

Applications. The equivalence notion we consider in this section has two
straightforward applications, one related to the symbolic validation of crypto-
graphic properties and one related to the search for on-line guessing attacks.

An on-line attack is one in which the attacker interacts with honest agents
to achieve his goals which usually are the acquisition of a previously unknown
piece of data, or the impersonation of a honest agent. In these cases the
achievability of a goal can be reduced to a reachability problem. However,
one may consider goals for which this reduction does not hold. For example,
the dictionary attacks introduced by Schneier [57] consist in guessing a piece
of data (usually a password) and interacting with the honest agents using this
piece of data. Depending on the resulting communication the attacker knows
whether the guess was correct. It is often the case that such attacks can be
detected by the honest agents involved. For example, sending a wrong pass-
word will be detected by an authentication system that, after a small number
of failures, may invalidate the account and ask for a new password. To take
into account this possible response by honest agents, Ding and Horster [38]
have introduced the concept of undetectable on-line password guessing at-
tacks: An attacker ... verifies the correctness of his guess using responses of
S. ... A failed guess can not be detected and logged by S, as S is not able
to depart an honest request from a malicious request. Guessing attacks have
been formalized thanks to the concept of indistinguishability (see e.g., [1]).
We can say now that a protocol is vulnerable to undetectable on-line guessing
attacks whenever (i) the honest agents cannot distinguish between a session
with the right piece of data and one involving a wrong guess, whereas (ii)
the intruder can distinguish the two executions. We model the first point by
stating that the tests performed by the honest agents succeed in both cases,
and the second point by saying that the two executions are not equivalent.

Inspired by the pioneering paper by Abadi and Rogaway in 2000 [4] sev-
eral recent works have shown that computational proofs of indistinguisha-
bility ensuring the security of a protocol can be derived, under some natu-
ral hypothesis on cryptographic primitives, from symbolic proofs. This has
opened the path to the automation of computational proofs. It was shown

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 55/94

by [34] that in presence of an active attacker observational equivalence of
the symbolic processes can be transferred to the computational level. Hence
symbolic equivalence seems to be the proper setting for deriving soundness
results.

Related work Many works have been dedicated to proving correctness
properties of cryptographic protocols using equivalences on process calculi. In
particular, framed bisimilarity has been introduced by Abadi and Gordon [3]
for this purpose, for the spi-calculus. Another approach that circumvents the
context quantification problem is presented in [24] where labelled transition
systems are constrained by the knowledge the environment has of names and
keys. This approach allows for more direct proofs of equivalence.

To the best of our knowledge, the only tool capable of verifying
equivalence-based secrecy is the resolution-based algorithm of ProVerif [18]
that has been extended for this purpose. Proverif has also been enhanced
for handling equivalences of processes that differ only in the choice of some
terms in the context of the applied π-calculus [20]. This allows to add some
equational theories for modelling properties of the underlying cryptographic
primitives.

Few decidability results are available. In the article [47] Hüttel proves
decidability for a fragment of the spi-calculus without recursion for framed
bisimilarity. Since [35] relies on the proof of Baudet’s result, which is long
and difficult [13], we believe that a simpler way to get decidability of S-
equivalence, as in our approach, may help to obtain new decidable cases for
S-equivalence as well as for observational equivalence by the transfer results
of [35].

Organization of this section. In Section 5.2 we recall basic notions on
terms, equational theories, and subterm deduction systems which are used
for modelling both honest and dishonest agents of cryptographic protocols.
In Section 5.3 we introduce the central concept of symbolic derivation which
can be considered as a specification for an agent behaviour. The solutions
of a symbolic derivation are defined. They characterize the possible inter-
actions of an agent with its environment. We show how we can express the
more classical notion of static equivalence within the framework of symbolic
derivations. The main result of the section is proved in Section 5.4, namely
that equivalence of symbolic derivations is decidable for subterm deduction
systems.

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 56/94

5.2 Definitions
5.2.1 Terms

We assume given a signature F , an infinite set of variables X and two infinite
sets of free constants C and Cnew. The first set is intended to represent
“regular” constants employed by the honest users while the second set Cnew
is intended to represent fresh values created by an attacker. The set of
terms built with F , the constants and X is denoted T(F ,X) and its subset
of ground terms (terms without variables) T(F). We denote Var(t) (resp.
Const(t)) the set of variables (resp. constants) occurring in a term t ∈
T(F ,X) and Sub(t) the set of subterms of t. These notations are extended
as expected to sets of terms. We denote t[s] a term t that admits s as
subterm. Positions in a term t are defined as usual as finite sequences of
positive integers. The empty sequence is denoted ε. We denote the subterm
of t at position p with t|p which is defined by t|ε = t and if t = f(t1, . . . , tn)
we define t|i·p = (ti)|p. The expression t[p← s] denotes a term obtained from
term t by replacing the subterm at position p by s. The size ‖t‖ of a term t is
the number of distinct subterms of t. The notation is extended as expected
to sets of terms.

A substitution σ is an idempotent mapping from X to T(F ,X) such that
Supp(σ) = {x |σ(x) 6= x}, the support of σ, is a finite set. The application of
a substitution σ to a term t (resp. a set of terms E) is denoted tσ (resp. Eσ)
and results in the term t in which all variables x are replaced by the term
xσ. A substitution σ is ground w.r.t. F if the image of Supp(σ) is included
in T(F).

A rewriting system R is a finite set of couples (l, r) ∈ T(F ,X)×T(F ,X),
where each couple is called a rewriting rule and is denoted l → r. The
rewriting relation →R between terms is defined by t →R t′ if there exists
l→ r ∈ R, a position p, and a substitution σ such that lσ = t|p and rσ = s,
and t′ = t[p← s]. A rewriting system is terminating if for any term t there is
no infinite sequence of rewritings starting from t. It is convergent if it has in
addition the confluence property: every sequence of rewriting starting from
t ends in the same term denoted (t)↓R, or simply (t)↓ if R is clear from the
context. We say that a term t is in normal form if t = (t)↓R. A substitution
σ is in normal form if for all x ∈ Supp(σ), the term σ(x) is in normal form.
Given a substitution σ, we denote (σ)↓R the substitution such that, for all
x ∈ Supp(σ) we have (xσ)↓R = x(σ)↓R.

A convergent rewriting system R defines an equational theory E which
is a congruence relation on terms in T(F ,X). We denote t =E t′ the fact
that (t)↓ = (t′)↓ and say in this case that t and t′ are equal modulo E . We

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 57/94

say that the equational theory defined by R is subterm if R is furthermore
such that for every rewrite rule l → r ∈ R one has r ∈ Sub(l). We note
that convergent subterm equational theories are always consistent, i.e., they
always have a model with more than one element.

Let E be a set of axioms on T(F ,X). An E-Unification system S is a
finite set of equations in T(F ,X) denoted by (ti ?= ui)i∈{1,...,n}. It is satisfied
by a ground substitution σ, and we write σ |= ES, if for all i ∈ {1, . . . , n}
the equality tiσ =E uiσ holds. When the equational theory E can be defined
by a rewriting system that contains no equations we say that E is the empty
theory, A unification system in the empty theory is also called a syntactic
unification system. An important property of unification systems, whose
proof can be found in [31], is the following replacement property.

Given terms u, v, t, we denote by tδu,v the parallel replacement of all
occurrences of u by v in t. Given a substitution σ we denote by σδu,v the
substitution such that x(σδu,v) = σ(x)δu,v.

Lemma 4 For any equational theory E, if an E-unification system S is sat-
isfied by a substitution σ, and c is any free constant not in S, then for any
term t, σδc,t is also a solution of S.

For the empty theory this lemma admits a kind of reciprocal:

Lemma 5 If σ satisfies an ∅-unification system S and for all s ∈ Sub(S)
we have sσ 6= t then for any constant c not occurring in t, (sσ)δt,c = s(σδt,c).
Hence σδt,c is also a solution of S.

Proof. By structural induction on term s. If s is a constant, sσ 6= t implies
s 6= t and thus s = (sσ)δt,c = s(σδt,c). If s is a variable we simply apply
the definition of replacement to get (sσ)δt,c = s(σδt,c). If s = f(s1, . . . , sn),
sσ 6= t implies (f(s1, . . . , sn)σ)δt,c = f((s1σ)δt,c, . . . , (snσ)δt,c) and we apply
the induction hypothesis to (siσ)δt,c. 2

5.2.2 Subterm Deduction Systems

We give a formal model for roles and the execution of roles (including the
intruder). Messages are ground terms and deduction rules are rewrite rules
on sets of messages representing the knowledge of an agent. Each role de-
rives new messages from a given (finite) set of messages by using deduction
rules. Furthermore, these deductions are considered modulo the equational
congruence =E generated by a set E of equational axioms satisfied by the
function symbols of the signature F .

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 58/94

Definition 1 A subterm deduction system is a triple 〈F ,P , E〉 such that:

• F is a signature admitting a subset F ′ of public symbols;

• P ⊆ F is a set of public symbols;

• E is defined by a convergent rewrite system R

such that each public symbol f defines a deduction rule x1, . . . , xn �
f(x1, . . . , xn) whose intended meaning is that given terms t1, . . . , tn it is
possible to apply the function f on these terms to deduce a new term
(f(t1, . . . , tn))↓.

Example 5.1 Let us now present the example of the Dolev-Yao deduction
system with pairs and asymmetric encryption. The signature FD contains 3
public symbols of arity 2, namely 〈_,_〉, ae(_,_), and ad(_,_) describing
respectively the concatenation of two messages, the encryption of a message
(its first argument) by a public key encryption algorithm where the key is the
second message and the converse operation of decryption with the private key.
It also contains two public projection symbols of arity 1, namely π1(_), π2(_),
and two symbols of arity 1, namely pk(_) and sk(_) denoting respectively
public and private keys.

All these symbols can be employed by any agent, and we have thus the
following deduction rules:

PD =

Concatenation Encryption
x, y � 〈x, y〉 x, y � ae(x, y)
x � π1(x) x, y � ad(x, y)
x � π2(x)

The equational theory HD contains the following relations:

ED =

Concatenation Encryption
π1(〈x, y〉) = x ad(ae(x, pk(y)), sk(y)) = x
π2(〈x, y〉) = y

The deduction system IDY = 〈FD,PD, ED〉 describes the classical Dolev-Yao
equational model with pairing and asymmetric encryption.

Let us recall an interesting property of any subterm convergent theory
E . Let us consider a term t and a substitution σ in normal form. Since
the equational theory is convergent, a bottom-up sequence of rewriting leads
from tσ to (tσ)↓. We note that since this sequence is bottom-up and since σ
is in normal form:

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 59/94

• Once a rewrite rule is applied at a position p, and since r is a strict
subterm of l, all subterms below or at the position p in the resulting
term are in normal form;

• As a consequence, the rewrite rules in the bottom-up sequence of rewrit-
ings on tσ are applied at most once at each position p in t.

This second point implies that basic narrowing [46] terminates and, since E
is convergent, is a complete unification procedure for E . In addition we have
that the number of narrowing steps to apply on a term t is smaller than
|Sub(t) \ Var(t)|.

5.3 Symbolic Derivations
5.3.1 Definitions

Symbolic derivations. Given a deduction system 〈F ,P , E〉, a role applies
public symbols in P to construct a response from its initial knowledge and
from messages received so far. Additionally, it may test equalities between
messages to check the well-formedness of a message. Hence the activity of a
role can be expressed by a fixed symbolic derivation:

Definition 2 (Symbolic Derivations) A symbolic derivation for a deduction
system 〈F ,P , E〉 is a tuple (V ,S,K, In,Out) where V is a mapping from a
finite ordered set (Ind, <) to a set of variables Var(V), K is a set of ground
terms (the initial knowledge) In is a subset of Ind, Out is a multiset of
elements of Ind and S is a set of equations.

The set Ind represents internal states of the symbolic derivation. We
impose that any i ∈ Ind denotes a state of one of the following kinds:

Deduction state: There exists a public symbol f ∈ P of arity n such that
S contains the equations V(i) ?= f(V(α1), . . . ,V(αn)) with αj < i for
j ∈ {1, . . . , n} .

Re-use state: Otherwise, if there exists j < i with V(j) ?= V(i);

Memory state: Otherwise, if there exists t in K and an equation V(i) ?= t
in S;

Reception state: Otherwise, we must have i ∈ In;

Additionally, a state i is also an emission state if i ∈ Out.
A symbolic derivation is closed if it has no reception state. A substitution

σ satisfies a closed symbolic derivation if σ |=E S.

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 60/94

Remark on re-use states. We believe that using symbolic derivations in-
stead of more standard constraint systems permits one to simplify the proofs
by having a more homogeneous framework. There is however one drawback
to their usage. While most of the time it is convenient to have an identi-
fication between the order of deduction of messages and their send/receive
order, building in this identification too strictly would prevent us from ex-
pressing simple problems. Re-use states are employed to reorder the deduced
messages to fit an order of sending messages which can be different. For ex-
ample consider an intruder that knows (after reception) two messages a and
b received in that order, and that he has to send first b, then a. Since the
states in a symbolic derivation have to be ordered, we have to use at least
one re-use state (for a) to be able to consider a sending of a after the sending
of b. We note that re-use states that are not employed in a connection can
be safely eliminated without changing the deductions, the definition of the
knowledge nor the tests in the unification system.

Example 5.2 Let us consider the cryptographic protocol for deduction sys-
tem IDY where FD and PD have been extended by a free public symbol f :

A→B: ae(Na, pk(B))
B→A: ae(f(Na), pk(A))
where
A knows A,B, pk(B), pk(A), sk(A)
B knows A,B, pk(A), pk(B), sk(B)

Let us define a symbolic derivation for role B:

Ind = {0, . . . , 8}
V = i ∈ Ind 7→ xi
K = {A,B, pk(A), pk(B), sk(B)}
In = {5}

Out = {8}
S = {x0

?= A, x1
?= B, x2

?= pk(A), x3
?= pk(B), x4

?= sk(B)
x6

?= ad(x5, x4), x7
?= f(x6), x8

?= ae(x7, x2)}

The set of deduction states is {6, 7, 8}, there are no re-use states, the set of
memory states is {0, . . . , 4} and the only reception state is 5. Assuming that
the role B tests whether the received message is a cipher, one may add a
ninth deduction state with x9

?= ae(x6, x3) and an equation x5
?= x9.

In addition we assume that two symbolic derivations do not share any
variable, and that equality between symbolic derivations is defined modulo
a renaming of variables.

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 61/94

We represent graphically a symbolic derivation as follows:

V(1) V(i) V(n) S C
��

OO
..
............ ..
........

Deduction of V(i)
��

• The sequence of variables V(1), . . . ,V(n) represents the sequence
V(Ind);

• an arrow pointing to V(i) means that i ∈ In, as is the case for V(1) in
the above figure;

• an arrow pointing away from V(i) means that i ∈ Out, as is the case
for V(n) in the above figure;

• S is the unification system.

For deduction systems of concern, closed derivations are such that each
variable in V has a unique possible instance.

Lemma 6 Let I be a subterm deduction system, and consider a closed and
satisfiable I-symbolic derivation C = (V ,S,K, In,Out). Then there exists a
unique ground substitution σ in normal form of support Im(V) such that any
unifier of S is an extension of σ.

Proof. Since the symbolic derivation C = (V ,S,K, In,Out) is closed, it
has by definition no input states, and thus all states are either knowledge,
re-use or deduction states. By induction on the set of indices Ind ordered
by < :

Base case: Assume i is a minimal element in Ind. By minimality i cannot
be a re-use state. If it is a knowledge state then by definition there
exists in S an equation V(i) ?= t, with t a ground term in normal form,
and thus for every unifier τ of S we must have V(i)τ = t. If i is a
deduction state, and since it is minimal, the public symbol employed
must be of arity 0 and hence is a constant, i.e., again a ground term
t. In both cases there exists a unique ground substitution σ in normal
form defined on {V(i)} and such that any unifier of S is an extension
of σ.

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 62/94

Induction case: Assume there exists a unique ground substitution σ in nor-
mal form with support: {V(j) | j < i} such that any unifier of S is an ex-
tension of σ. If i is a re-use state, we note that V(i) is already in the sup-
port of σ, and we are done. If it is a knowledge state, reasoning as in the
basic case permits us to extend σ to V(i) if necessary. If it is a deduc-
tion state then there exists in S an equation V(i) ?= f(V(j1), . . . ,V(jn))
with j1, . . . , jn < i that has to be satisfied by every unifier θ of S. By
induction every such unifier has to be equal to σ on {V(j1), . . . ,V(jn)}.
Thus for every unifier θ of S we have V(i)θ =E f(V(j1)θ, . . . ,V(jn)θ).
By induction f(V(j1)θ, . . . ,V(jn)θ) =E f(V(j1)σ, . . . ,V(jn)σ) and thus
we must have V(i)θ = (f(V(j1)σ, . . . ,V(jn)σ))↓. Therefore σ can be
uniquely extended on V(i) by setting V(i)σ = (f(V(j1)σ, . . . ,V(jn)σ))↓
which is again a ground term.

2

By Lemma 6, if a derivation is closed, then for every i ∈ Ind the variable
V(i) is instantiated by a ground term. We say that a term t is known at
step i in a closed symbolic derivation if there exists j ≤ i such that V(j) is
instantiated by t.

Connection. We express the communication between two agents repre-
sented each by a symbolic derivation by connecting these symbolic deriva-
tions. This operation consists in identifying some input variables of one
derivation with some output variables of the other and vice-versa. This con-
nection should be compatible with the variable orderings inherited from each
symbolic derivation, as detailed in the following definition:

Definition 3 Let C1, C2 be two symbolic derivations with for i ∈ {1, 2} Ci =
(Vi,Si,Ki, Ini,Outi), with disjoint sets of variables and index sets (Ind1, <1)
and (Ind2, <2) respectively. Let I1, I2, be subsets of In1, In2, and O1, O2 be
sub-multisets of Out1, Out2 respectively.

Assume that there is a monotone bijection φ from I1 ∪ I2 to O1 ∪ O2
such that φ(I1) = O2 and φ(I2) = O1. A connection of C1 and C2 over the
connection function φ, denoted C1 ◦φ C2 is a symbolic derivation

C = (V , φ(S1∪S2),K1∪K2, (In1∪ In2)\ (I1∪I2), (Out1∪Out2)\ (O1∪O2))

where:

• (Ind, <) is defined by:

– Ind = (Ind1 \ I1) ∪ (Ind2 \ I2);

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 63/94

– < is the transitive closure of the relation: <1 ∪ <2;

• φ is extended to a renaming of variables in Var(V1)∪Var(V2) such that
φ(V1(i)) = V2(j) (resp. φ(V2(i)) = V1(j)) if i ∈ I1 (resp. I2) and
φ(i) = j

When the exact connection function in a connection does not matter, is
uniquely defined, or is described otherwise, we will omit the subscript and
denote it C1 ◦ C2.

A connection is satisfiable if the resulting symbolic derivation is satisfi-
able.

Example 5.3 Let Ch be the symbolic derivation in Example 5.2:

Indh = {0, . . . , 8}
Vh = i ∈ Ind 7→ xi
Kh = {A,B, pk(A), pk(B), sk(B)}
Inh = {5}

Outh = {0, 1, 2, 3, 4, 5, 6, 7, 8}
Sh = {x0

?= A, x1
?= B, x2

?= pk(A), x3
?= pk(B), x4

?= sk(B)
x6

?= ad(x5, x4), x7
?= f(x6), x8

?= ae(x7, x2)}

We model the initial knowledge of the intruder with another symbolic deriva-
tion CK:

IndK =
{

0k, . . . , 3k
}

VK = ik ∈ Indk 7→ yi
KK = {A,B, pk(A), pk(B)}
InK = ∅

OutK = IndK
SK =

{
y0

?= A, y1
?= B, y2

?= pk(A), y3
?= pk(B)

}
and we let C ′ be the following derivation:

Ind′ = {0′, . . . , 8′}
V ′ = i′ ∈ Ind′ 7→ zi
K = {n} ⊂ Cnew

In′ = {0′, 1′, 2′, 3′, 8′}
Out′ = {5′} ∪ Ind′

S ′ = {z4
?= n, z5

?= ae(z4, z3),
z6

?= f(z4), z7
?= ae(z6, z2), z8

?= z7}

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 64/94

Let φ be the application from 0k, 1k, 2k, 3k, 5′, 8 to 0′, 1′, 2′, 3′, 5, 8′ respectively
and ψ be a function of empty domain. Then we have (Ch ◦ψ CK) ◦φ C ′:

Ind =
{

0, . . . , 4, 0k, . . . , 3k, 5′, 6′, 7′, 6, 7, 8
}

V = Vh|Ind ∪ VK |Ind ∪ V
′
|Ind

K = {A,B, pk(A), pk(B), sk(B), n}
In = ∅

Out = Ind ∩ Ind′

S = {x0
?= A, x1

?= B, x2
?= pk(A), x3

?= pk(B), x4
?= sk(B)

x6
?= ad(x5, x4), x7

?= f(x6), x8
?= ae(x7, x2)

y0
?= A, y1

?= B, y2
?= pk(A), y3

?= pk(B)
z5

?= n, z6
?= ae(z5, z3),

z7
?= f(z5), z8

?= ae(z7, z2), z9
?= z8}

with the ordering:

0 < 1 < 2 < 3 < 4 < 5′ < 6 < 7 < 8
0k < . . . < 3k < 4′ < . . . < 7′ < 8

The connection of two symbolic derivations C1 and C2 identifies variables
in the input of one with variables in the output of the other. Variables
that have been identified are removed from the input/output multiset of the
resulting symbolic derivation C. The set of equality constraints of C is the
union of the equality constraints in C1 and C2, plus equalities stemming from
the identification of input and output.

x1 xn S1 C1

y1 yn S2 C2
��

OO

��

OO
�� _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ���
�

�

�
�

��� _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ��

S
OO

OO

��

C = C1 ◦ C2

One easily checks that a connection of two symbolic derivations is also a
symbolic derivation. Also, the associativity of function composition applied
on the connections implies the associativity of the connection of symbolic
derivations. Since connection functions are bijective, we will also identify
C ◦ C ′ and C ′ ◦ C. Thus when we compose several symbolic derivations, we
will freely re-arrange or remove parentheses.

Traces. Let C1 and C2 be two I-symbolic derivations and ϕ be a connection
such that C = C1 ◦ϕ C2 = (V ,S,K, In,Out) is closed. Assuming that I is

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 65/94

a subterm deduction system, Lemma 6 implies that there exists a unique
ground substitution τ in normal form such that any unifier σ of S1 ∪ S2 is
equal to τ on the image of V . We denote TrC1◦ϕC2(C ′) the restriction of this
substitution τ to the variables in the sequence of C ′, for C ′ ∈ {C1, C2, C1 ◦ϕ C2},
and call it the trace of the connection on C ′. In the remainder of this section
we will always assume that trace substitutions are in normal form.

5.3.2 Solutions of symbolic derivations

Honest and attacker symbolic derivations We consider two types of
symbolic derivations, one that is employed to model honest agents, and one
to model an attacker.

Honest derivations. We do not impose constraints on the symbolic
derivations representing honest principals, but for the avoidance of constants
in Cnew, since these constants are employed to model new values created by
an attacker. We assume that nonces created by the honest agents are created
at the beginning of their execution and are constants that are not in Cnew.

Definition 4 (Honest symbolic derivations) A symbolic derivation C is an
honest symbolic derivation or HSD, if the constants appearing in C are not
in Cnew.

Example 5.4 The symbolic derivation for role B in Example 5.2 is honest.

Attacker derivations. We consider an attacker modeled by a symbolic
derivation in which only the following actions are possible:

• create a fresh, random value;

• receive from and send a message to one of the honest participant;

• deduce a new message from the set of already known messages;

• every state is in Out given that the intruder should be able to observe
his own knowledge;

• given that we consider an actual execution, the set of states is totally
ordered.

The definition of attacker symbolic derivations models these constraints:

Definition 5 (Attacker symbolic derivations) A symbolic derivation C =
(V ,S,K, In,Out) is an attacker symbolic derivation, or ASD, if

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 66/94

• Ind is a total order;

• Out contains at least one occurrence of each index in Ind;

• K is a subset of Cnew, and

• S contains only equations of the form

Test equation: V(i) ?= V(j) for i, j ∈ Ind;

Deduction at state i: V(i) ?= f(V(i1), . . . ,V(in)), with i1, . . . , in <
i, and f a public symbol;

Nonce creation at state i: V(i) ?= ci with ci ∈ Cnew.

The fact that the initial knowledge of the attacker is empty but for the
nonces is not a restriction when analyzing protocols, as one can see from
Example 5.3, and is justified in Section 5.3.3.

Example 5.5 The following derivation C ′ is an ASD for the same deduction
system as Example 5.2:

Ind′ = {0′, . . . , 8′}
V ′ = i′ ∈ Ind′ 7→ zi
K = {n} ⊂ Cnew

In′ = {0′, . . . , 3′, 8′}
Out′ = {5′} ∪ Ind′

S ′ = {z4
?= n, z5

?= ae(z4, z3),
z6

?= f(z4), z7
?= ae(z6, z2), z8

?= z7}

Informally the ASD expresses that the attacker receives some key k, creates
a nonce n, sends the encrypted nonce to a role B as in Example 5.2. Then
the attacker tries to check that applying f to n gives a term equal to the
decryption of B’s response.

Definition 6 (Testing ASDs) An ASD is testing iff K is empty.

Solutions of a symbolic derivation. Given a symbolic derivation Ch we
denote C?h the set of ASDs C such that Ch ◦C is closed and satisfiable. In that
case we say that C is a solution of Ch.

Example 5.6 In Example 5.3 the ASD C ′ is a solution of Ch◦CK since (Ch◦ψ
CK) ◦φ C ′ has no input variables and S is satisfiable (by simply propagating
the equalities x0 = A, x1 = B, . . .).

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 67/94

Decision problems

Satisfiability. Though it is expressed using different notations, the prob-
lem of the existence of a secrecy attack on a protocol execution with a finite
number of messages is equivalent, in the setting of this section, to the satis-
fiability problem below. It has been shown to be NP-complete in [55] for the
standard Dolev-Yao deduction system of Example 5.1.

I-Satisfiability
Input: a HSD C
Output: Sat iff C? 6= ∅

Symbolic Equivalence. In this section, we are interested in the equiva-
lence of HSDs w.r.t. an active intruder.

Definition 7 Two HSDs Ch and C ′h are symbolically equivalent iff C?h = C ′h
?.

Thanks to Lemma 7 one can easily see that when the states in the HSDs are
totally ordered this notion is the same as the symbolic equivalence in [29].

I-Symbolic Equivalence
Input: Two honest I-symbolic derivations Ch and C ′h
Output: Sat iff Ch? = C ′h

?.

Remark. Let us remark that it makes sense to compare C?h and C ′h
? only if

there exists a bijection between the in- and output states of these derivations
such that every closed connection between an ASD and Ch can be mapped,
using this bijection, to a closed connection between the same ASD and C ′h.
In order to simplify notations we implicitly quantify over all connection func-
tions such that a composition is closed and satisfiable and consider the same
connection (modulo the bijection) with the two HSDs Ch and C ′h.

5.3.3 Relation with static equivalence

The problem we consider is whether two cryptographic processes, represented
by HSDs in our setting, are observationally equivalent, in the sense that an
attacker cannot build a sequence of interactions that would produce different
results when applied to the two processes. Solving this problem has many
applications. For instance if the two processes only differ by a data value this

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 68/94

shows that this data is confidential. In [2] the observational equivalence prob-
lem for an attacker who does not interact with the honest agents is reduced
to the one of the static equivalence between two sequences of messages.

In the broader setting in which an attacker interacts online with the hon-
est participants, [35] reduces the observational equivalence to trace equiva-
lence for a class of processes corresponding to honest symbolic derivations.
Their trace equivalence corresponds to symbolic equivalence in our setting.

Static equivalence.

Contexts. Let us first recall the notion of static equivalence between
frames as introduced in [2]. A frame is a substitution σ of finite support
{x1, . . . , xn} hiding a finite sequence ~c of constants, which is denoted ν~c · σ.
A public constructor is a function symbol f of arity k such that, if the in-
truder knows t1, . . . , tk he also knows f(t1, . . . , tk). A public context M over
the frame ν~c ·σ is a term whose variables are in the support of σ, whose con-
stants are not in ~c and whose other symbols are public constructors. Finally,
equality is defined modulo an equational theory E .

Constants. Without loss of generality, we can assume that all free con-
stants in a context M are distinct from those appearing in σ: the rationale
for this is that if a free constant c0 is in σ but not in ~c we can always con-
sider the public contexts on the frame ν ~c, c0 · {x0 7→ c} ∪ σ which are the
same—but for the replacement of c by x0—as those on the frame ν~c ·σ. This
motivates the splitting of the set of free constants into two sets, C and Cnew,
where C designates those free constants that can be used by honest users,
and Cnew those that can be used by an attacker. We emphasize here that,
as in [2], the attacker can manipulate terms containing constants in C. We
have just ensured that these constants have to be passed explicitely to the
attacker through the substitution σ. When considering symbolic derivations,
this translates into imposing that the knowledge of an ASD must contain
only constants in Cnew.

Let us now recast the definition of static equivalence, as stated in [2],
according to these assumptions.

Definition 8 (Static equivalence) Two frames ϕ = ν~c · σ and ψ = ν~c′ · τ
that have the same domain are statically equivalent if for any public contexts
M and N whose constants are not in ~c ∪ ~c′ one has Mσ =E Nσ iff one has
Mτ =E Nτ .

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 69/94

The definition of contexts corresponds to the notion of derivation in the
following sense: let I to be the deduction system defined over a signature F ,
modulo an equational theory E , with P equal to the set of public symbols.
We note that, given the possible deductions, the quantification is over all
symbolic derivations that takes in input terms in the frame and constants
not belonging to these frames, and thus in Cnew. Static equivalence states
that any couple (M,N) of contexts yields the same result in one frame iff it
yields the same result in the other frame. This suggests us to express static
equivalence of frames in terms of sets of solutions of symbolic derivations as
follows.

First, to a substitution σ of finite support x1, . . . , xn we associate the
closed symbolic derivation:

Cσ = (V ,
{
V(i) ?= xiσ

}
i=1,...,n

, Im(σ), ∅, {1, . . . , n})

with V of support {1, . . . , n}. To represent the construction of contexts by
the attacker, we consider symbolic derivations CI = (VI ,SI , ~cI , InI , ∅), with
|InI | = n, and ~cI a finite subset of Cnew. The equality of two contexts M
and N over σ can then be translated as the satisfiability of the following
composition of symbolic derivations:

V(1) V(n)
{
V(i) ?= xiσ

}
i∈{1,...,n}

Cσ

~c′ V ′(1) V ′(n) V ′(iM)V ′(iN) S ′
Solution of Cσ

with: V ′(iM) ?= V ′(iN)
︷ ︸︸ ︷ ..

...
................ M

�� ...
...
....

.......................
N

��
OOOO

Clearly, two frames ν~c · σ and ν~c · τ are statically equivalent, with the
standard definition, iff for any ASD C ′, C ′ ◦ Cσ is closed and satisfiable iff
C ′ ◦ Cτ is closed and satisfiable. In our notation this is translated into the
equality C?σ = C?τ , and the problem of deciding whether two closed frames
are in static equivalence is the same problem as deciding whether two closed
symbolic derivations are symbolically equivalent.

Equational theories and equivalence The original problem of interest
considered is whether two cryptographic processes are bisimilar for an exter-
nal observer. In [2] this problem is reduced to the one of the static equivalence
between two sequences of ground messages. However, the cryptographic op-
erations considered were total, which means e.g., that a decryption applied
on a message with a key always returns a message even when the decryption
key does not match the encryption key. As a result, the observer is not aware

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 70/94

of whether a cryptographic operation is successful. We note that under these
assumptions the frames:{

ϕ = νa, k · {x1 7→ enc(a, k), x2 7→ k−1}
ψ = νa, k′, k · {x1 7→ enc(a, k′), x2 7→ k−1}

are equivalent when assuming that an observer has no way to differentiate
a =E dec(x1, x2) · ϕ and dec(enc(a, k′), k−1) = dec(x1, x2) · ψ. This is the
case e.g., when no padding nor other security measure permits one to check
that the decryption has succeeded. But when one assumes that the cryp-
tographic primitives abstracted by the enc and dec symbols are such that
dec(enc(a, k′), k−1) can be detected to be an incorrect decryption result (for
example because it does not have a correct padding), the two frames ϕ and
ψ shall be distinguishable. The choice between the two models shall be made
on a per operation basis and affects both the HSDs and the ASDs:

HSDs: In the second case, it makes sense to assume that there is no “decom-
position” symbol in the honest symbolic derivations considered (assum-
ing thereby that in a prudent implementation a raised exception would
have stopped the execution), while in the first case this distinction is
irrelevant.

ASDs: In the second case, we have to ensure that the traces seen by the in-
truder are equivalent w.r.t. to equational rules applied on the contexts
constructed by the intruder, i.e. we have to ensure that the unification
system is normalized in the same way when composing an ASD with
two HSDs. Technically, this amounts to a guessing of a set of narrowing
steps (see below) on the unification system of an ASD before composing
it with the HSDs. In the first case, one does not guess the normaliza-
tion steps before composing, and just relies on the satisfiability of the
unification system.

In the rest of this section we consider only the case of silently failing oper-
ations, given that there is no conceptual difficulty to change the proofs and
algorithms so that they are in accordance with the first case. We outline in
Section 5.4.6 how to adapt the decision problem and the resolution algorithm
proposed for the silently failing case.

5.4 The case of a subterm deduction system
This subsection is devoted to the proof of the main theorem of this section.

Theorem 1 Symbolic equivalence is decidable for subterm deduction sys-
tems.

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 71/94

In order to prove this theorem it suffices to provide a decision procedure
for the inclusion C?h ⊆ C ′h

?. We first prove in Section 5.4.2 that this inclusion is
equivalent to the inclusion Csf+

h ⊆ C ′h
? where ASDs in Csf+

h are the connections
between the stutter free ASDs (formally defined in Section 5.4.1) in C?h and an
ASD of bounded size. Since this inclusion is hard to test directly we introduce
in Section 5.4.3 another set Sol(Ch) such that Csf+

h ⊆ Sol(Ch) ⊆ C?h and thus
reduce the original inclusion problem to the problem of deciding whether
Sol(Ch) ⊆ C ′h

?. In Section 5.4.4 we introduce a well-founded ordering on
ASDs and prove that it suffices to decide this inclusion for the minimal ASDs
in Sol(Ch). We finally prove in Section 5.4.5 that these minimal ASDs have
a polynomial size w.r.t. the size of Ch. This leads to our non-deterministic
algorithm that guesses an ASD of a size within the bound, tests whether this
ASD is in Sol(Ch) and, if it is the case, tests whether it is in C ′h

?. We discuss
the complexity of this algorithm in Section 5.4.6.

5.4.1 (De)composition rules and stutter free derivations

Decomposition rules. Let Ch, C ′h be two HSDs and consider an attacker
derivation CI = (VI ,SI ,KI , InI ,OutI) in C?h, and let σ = TrCh◦CI(CI). Let
i0 ∈ IndI be a deduction state, and assume that the deduction rule is applied
with the equation VI(i0) ?= f(VI(i1), . . . ,VI(in)). If f(VI(i1)σ, . . . ,VI(in)σ)
is in normal form we say that the deduction state i0 is a composition state.
Otherwise, we say that the deduction state i0 is a decomposition state. Note
that in that case VI(i0)σ is a subterm of a previously known term at some
state i < i0. We remark that if CI ∈ C?h ∩ C ′h

?:

• the deduction states of CI do not depend on whether we are considering
CI ◦ Ch or CI ◦ C ′h;

• but the composition and decomposition states may be different.

Deductions and symbolic derivations. Given a public symbol f we call
symbolic deduction and denote Df the symbolic derivation:

(Vf ,
{
V(n+ 1) ?= f(V(1), . . . ,V(n))

}
, ∅, {1, . . . , n}, {1, . . . , n, n+ 1, n+ 1})

where Vf : {1, . . . , n+ 1} → X is an injective function. The order < on
{1, . . . , n+ 1} is such that for all i ∈ {1, . . . , n} we have i < n+ 1.

Stutter free symbolic derivations. Let us now define stutter free sym-
bolic derivations, which correspond intuitively to symbolic derivations which
only solve reachability problems.

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 72/94

Let CI = (VI ,SI ,KI , InI ,OutI) be an ASD in C?h. We say that CI is
aware with respect to Ch if whenever i, j are two deduction or memory states
of CI such that VI(i)θ =E VI(j)θ, with θ = TrCI◦Ch(CI) then SI contains the
equation VI(i) ?= VI(j).

Definition 9 (stutter free derivation) Let CI = (VI ,SI ,KI , InI ,OutI) ∈ C?h
be an ASD. We say that CI is stutter free if:

• There exists a most general unifier θ of SI in the empty theory;

• Whenever i 6= j for non-reuse states i, j we have VI(i)θ 6=E VI(j)θ;

• For every couple of memory or deduction states i, j with j < i we have
V(j)σ 6= V(i)σ, where σ = TrCI◦Ch(CI).

The third point of the definition implies that no action of the attacker
will produce a value that was hitherto known, hence the name of stutter free
derivations. The first two points enforce that in a stutter free derivation the
attacker does not test the messages he receives or produces. The first point
forbids implicit tests in which some equality from the equational theory has to
be satisfied whereas the second point forbids an explicit testing between the
values of two states. Finally let us note that when considering the connection
with a given HSD, every stutter free ASD is aware.

Proposition 2 Let CI = (VI ,SI ,KI , InI ,OutI) ∈ C?h be a stutter free ASD.
We have:

(i) VI is injective on non-reuse states;

(ii) For any ground substitution σ of domain InI the unification system SIσ
is satisfiable in the empty theory.

Proof. (i) Using the notations of Definition 9 if there exists i 6= j where
neither i nor j are reuse states such that VI(i) = VI(j) then we have
VI(i)θ = VI(j)θ, and thus CI is not stutter free.

(ii) We recall that a unification system SI is in solved form in the empty
theory if and only if there exists an ordering <u on variables such that
SI contains, for each variable x, at most one equation x

?= t and if
for every y ∈ Var(t) we have y <u x. First let us notice that since CI
is stutter free, SI does not contain any test equation (for the second
condition would otherwise be impossible to satisfy for any unifier of
SI .) Thus SI contains exactly one equation VI(i) ?= t if i is not an

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 73/94

input or the re-use of an input state, and none otherwise. In the former
case we can assume that for a mgu θ of S we have V(i)θ = V(i). Given
the condition on the deduction equations, SI is in solved form, adding
to SI equations VI(i) ?= ti, for i ∈ InI and ti a ground term thus leads
to a unification system also in solved form.

2

Notations. In the rest of this section, when one considers an ASD in C?h,
and unless otherwise specified, decomposition and composition states and
stutter freeness are considered w.r.t. the composition with Ch. Given an
HSD Ch, we denote Csf

h the subset of stutter free symbolic derivations in C?h.
Proposition 3 Let Ch be a HSD. Then for any CI ∈ C?h there exist two ASDs
Cd and Cc such that

• There exists ψ such that Cd ◦ψ Cc = CI;

• For any satisfiable connection ϕ between CI and Ch we have in (Cc ◦ψ
Cd) ◦ϕ Ch:

– all deduction states of Cd are decompositions and Cd does not con-
tain any memory state,

– all deduction states of Cc are composition states.

• Furthermore, if CI is in Csf
h then Cc ∈ (Cd ◦ Ch)sf.

Proof. Consider a satisfiable connection C = Ch◦CI between Ch and CI . We
construct Cd by removing deductions from C in the following way. Assume i0
is a decomposition state when connecting CI with Ch:

V(i1) V(in)V(i0) S ∪ {V(i0)
?
=f(V(i1),...,V(in))} C

��

OO
...
...

.................. ..
...

.......

f

��

We replace the deduction with a connection with a symbolic deduction as
follows:

V(i1) V(in)V(i0) S C

V ′(i1) V ′(in)V ′(i0) {V(i0)
?
=f(V(i1),...,V(in))} Cf

��

OO

OO OO

��

OO OO

��

...
...

.................. ..
...

.......

f

��

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 74/94

We let Cd be the connection between all the extracted symbolic deductions.
It is clear that the derivation CI in which all the decomposition states have
been removed is now a symbolic derivation in which all deduction states are
composition states.

To finish the proof of the proposition, let us now assume that CI is stutter
free. Since we have not introduced any equality between variables in the
process of removing decompositions, nor introduced any new deduction or
memory state. The resulting symbolic derivation is thus also stutter free
when composed with Cd ◦ Ch. 2

5.4.2 Reduction of C?h ⊆ C ′h
? to Csf+

h ⊆ C ′h
?

We first prove that every ASD can be written as the connection between
a stutter free ASD and a testing ASD in which no new term is deduced
(Lemma 7). This implies the reduction of the inclusion problem to the one
of checking whether, for any stutter free ASD in C?h, the connections of this
ASD with Ch and C ′h result in closed symbolic derivations C1 and C2 such that
C?1 ⊆ C?2 (Lemma 8). Given a stutter free ASD in C?h this latter test is simple
since it suffices to consider the connection with ASD that have at most one
deduction (Propositions 4, 5).

Lemma 7 Let Ch be a HSD. Then for every CI in C?h there exist two ASDs
C ′ = (V ′,S ′,K′, In′,Out′) and Ct = (Vt,St,Kt, Int,Outt) such that:

• C ′ is in Csf
h and Ct is testing;

• {Vt(i)TrCt◦C′◦Ch(Ct)}i∈Indt
⊆ {V ′(i)TrC′◦Ch(C ′)}

i∈Ind′;

• For every HSD C ′h, if CI is aware in its composition with Ch, then
C ′ ◦ Ct ∈ C ′h

? iff CI ∈ C ′h
?

Proof. Let σ = TrCh◦CI(CI) and D be the set of deduction or memory states
in IndI . We define ψ : IndI → IndI an application such that for any state
i ∈ D we have ψ(i) = min {j ≤ i | j ∈ D and V(j)σ = V(i)σ}, and ψ is the
identity on the states in IndI \D. Let θ : VI(i) 7→ VI(ψ(i)). Let us construct
C ′ and Ct:

Internal states: Ind′ = ψ(IndI), Indt = IndI ;

Variables: Vt = VI and V ′ = VI|Ind′ ;

Unification systems: Let S0 be the set of equations that are deductions in
CI for some state i ∈ Ind′. Then we define S ′ = S0θ and St = SI \ S0;

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 75/94

Knowledge: K′ = KI and Kt = ∅;

Input states: Any state in Ind′ ⊆ IndI which is not a deduction state in
Ct is an input state of Ct. Input states of C ′ are the same as the ones
in CI ;

Output states: Outt = Indt and Out′ = OutI ∪ Ind′.

We define the connection φ to be the identity mapping from Int to Out′.
This construction keeps the first deductions of a term in C ′ and records

the redundant deductions by adding the deduction equations in Ct. The
application of θ on S ′ ensures that C ′ still is a symbolic derivation even
though some deduction states were removed. However we have changed in
this transformation the deductions by considering equalities induced by the
connection with Ch. The awareness of CI in its connection with Ch implies
that these equalities hold for every satisfiable connection of CI with another
C ′h.

The first point is true by construction. The proof of the second point
also follows directly from this construction since, by induction on Ind′ (resp.
on Indt) we can prove that for all i ∈ Ind′ (resp. for all i ∈ Indt)
V ′(i)TrC′◦Ch(C ′) = VI(i)σ (resp. Vt(i)TrCt◦φCt(C′◦Ch)(Ct) = VI(i)σ). For the
third point we employ awareness to prove that the set of substitutions satis-
fying SI is equal (modulo a renaming of variables) to the set of substitutions
satisfying the unification system of C ′ ◦ Ct. 2

We note that C ′ has the same input states as CI . Thus, if there exists a closed
connection between CI and a HSD C ′h then the same connection function can
be employed to obtain a closed connection between C ′ and Ch.

Lemma 8 Let Ch and C ′h be two HSDs. We have C?h ⊆ C ′?h if, and only if:

• Csf
h ⊆ C ′?h ;

• and for each aware ASD CI ∈ Csf
h and for all testing ASD Ct ∈ (CI ◦Ch)?

we have Ct ∈ (CI ◦ C ′h)?.

Proof. Let us first prove the direct implication. Let us assume that C?h ⊆
C ′h

?. By definition we then have Csf
h ⊆ C ′h

?. By contradiction let us assume
that there exists C ∈ Csf

h such that C1 = C ◦ Ch and C2 = C ◦ C ′h are such that
there exists a testing ASD Ct in C?1 6⊆ C?2 . By construction C ◦ Ct is an ASD
in C?h \ C ′h

?.
Let us prove the converse direction by contra-positive reasoning. Assume

that C?h \ C ′h
? 6= ∅ and thus contains an ASD CI . Adding test equalities to

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 76/94

CI satisfied by its connection with Ch, we assume wlog that CI is aware. Let
C ′, Ct be the ASDs obtained by applying Lemma 7 on CI w.r.t. Ch. Since
CI ◦ C ′h is not satisfiable, then neither is (C ′h ◦ C ′) ◦ Ct. Thus either C ′h ◦ C ′ is
not satisfiable, or it is satisfiable, but (C ′h ◦ C ′) ◦ Ct is not. In the first case we
have by definition of C ′ that Csf

h 6⊆ C ′h
?. In the second case we have found an

ASD C ′ in Csf
h such that C ′ ◦ Ch and C ′ ◦ C ′h are satisfiable closed derivations

and (C ′ ◦ Ch)? 6⊆ (C ′ ◦ C ′h)?. 2

Let us assume that we are given two HSDs Ch and C ′h such that Csf
h ⊆ C ′h

?.
Our goal is to show that C?h ⊆ C ′h

?. Given an ASD CI ∈ Csf
h we define

χ(CI) =
{
Ct testing ASD | Ct ◦ CI ∈ C?h \ C ′h

?
}

Intuitively this is the set of testing ASDs that permit one to distinguish Ch
from C ′h. By Lemma 8, C?h 6⊆ C ′h

? if, and only if, there exists an ASD CI such
that χ(CI) 6= ∅.

Proposition 4 C?h 6⊆ C ′h
? if, and only if, there exists CI ∈ Csf

h such that χ(CI)
contains an ASD Ct with at most one deduction and one equality test.
Proof. The converse direction is trivial.

First let us note that if C ′ ∈ C?h\C ′h
? then adding test equations to C ′ which

are satisfied by TrC′◦Ch(C ′) yields another symbolic derivation in C ′ ∈ C?h \C ′h
?.

Thus and wlog we let C ′ ∈ C?h \ C ′h
? be an aware ASD. According to Lemma 7

C ′ can be split into one stutter free derivation CI = (VI ,SI ,KI , InI ,OutI)
and one test derivation Ct = (Vt,St,Kt, Int,Outt). We also define a partition
Sdt ∪Stt of St such that Sdt contains only deduction equations and Stt contains
only test equations. Let Cdt = (Vt,Sdt ,Kt, Int,Outt). Let us define the
following substitutions:{

σI = TrCI◦Ch(CI) σ′I = TrCI◦C′h(CI)
σt = TrCt◦CI◦Ch(Ct)

We also define a substitution σ′t on V(Indt) in the following way. First we
note that, if Vt(i) = Vt(j) for two distinct states i, j which are not reuse
states, we can introduce a new variable x, change Vt(j) to x, and introduce
in St a new test equation Vt(i) ?= x. In other words we can assume wlog
that Vt is injective on states which are not reuse states. This permits one
to ensure that the subset Sdt of equations which are not test equations is
satisfiable in any closed connection with another symbolic derivation. We
define σdt = TrCdt ◦CI◦C′h(Cdt).

By the second point of Lemma 7 there exists a mapping ψ : Indt → IndI
such that for every i ∈ Indt we have Vt(i)σt = VI(ψ(i))σI . Wlog we assume
that ψ is defined as an extension of the connection between CI and Ct, thereby
ensuring that for input states i of Ct we also have Vt(i)σ′t = VI(ψ(i))σ′I .

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 77/94

Claim. Wlog we can assume that for any deduction state i ∈ Indt we have
Vt(i)σ′t 6= VI(ψ(i))σ′I .

Proof of the claim. Let i ∈ Indt be a deduction state such that
Vt(i)σ′t = VI(ψ(i))σ′I . Adding a reuse state if necessary, we can change i
into an input state that is connected to ψ(t) (or a state which is a reuse of
ψ(i)). This construction does not change σt nor σ′t and thus the fact that
Ct ◦ CI ◦ Ch or Ct ◦ CI ◦ C ′h is satisfiable. When repeatedly applying it, we
obtain a symbolic derivation Ct that satisfies the claim. 3

We now split the analysis in two cases depending on whether the set
It ⊆ Indt of indices i such that Vt(i)σ′t 6= VI(ψ(i))σ′I is empty or not. If it is
empty, the claim implies that we can assume there is no deduction states in
Ct, and thus that St = Stt . Since Ct ◦ CI ◦ Ch is satisfiable but not Ct ◦ CI ◦ C ′h
there exists two input states i, j and one equation Vt(i) ?= Vt(j) in St which
is satisfied by σt but not by σ′t. Thus χ(CI) contains one symbolic derivation
(V : i ∈ {1, 2} 7→ xi,

{
x1

?= x2

}
, ∅, {1, 2}, ∅) where 1 is connected to ψ(i) and

2 is connected to ψ(j).
On the other hand, if It is not empty, let i0 be minimal in this set, and let

Vt(i0) ?= f(Vt(i1), . . . ,Vt(in)) be the equation corresponding to this deduction
state in Sdt . Given the claim we can assume that i0 is the first deduction
state, and thus that all preceding states are input states. Thus there exists
an ordering on the set Ind0 = {t, 0, . . . , n} such that the following symbolic
derivation is in χ(CI) and satisfies the proposition:

(V : i ∈ Ind0 7→ xi,
{
x0

?= f(x1, . . . , xn) , x0
?= xt

}
, {t, 1, . . . , n}, ∅)

2

Given an HSD Ch let Csf+
h ⊆ C?h be the set of ASDs which are the con-

nection between an ASD in Csf
h and a testing ASD as in Proposition 4. We

again note that by construction the ASDs in Csf+
h are aware.

Proposition 5 Given two HSDs Ch and C ′h we have C?h ⊆ C ′h
? if, and only

if, Csf+
h ⊆ C ′h

?.

Proof. Since Csf+
h ⊆ C?h the direct implication is trivial. Let us prove the

converse direction by a contrapositive reasoning. If C?h 6⊆ C ′h
? then two cases

are possible:

• If Csf
h 6⊆ C ′h

? then adding an extra deduction and a test equality x ?= x
to an ASD in Csf

h \ C ′h
? yields an ASD in Csf+

h \ C ′h
?.

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 78/94

• Otherwise let CI be in C?h \C ′h
?. By Lemma 7 there exists C ′ and Ct such

that C ′ ◦ Ct ∈ C?h \ C ′h
?. Since it contains Ct we have χ(C ′) 6= ∅. Thus

by Proposition 4 it contains an ASD with at most one deduction state
and one equality test C ′t. We have C ′ ◦ C ′t ∈ C?h \ C ′h

? by definition, and
thus Csf+

h 6⊆ C ′h?

2

5.4.3 Reduction of Csf+
h ⊆ C ′h

? to Sol(Ch) ⊆ C ′h
?

We define in this subsection a set Sol(Ch) of ASDs for which it will be easy
to provide a finite generating set. To this end we first prove a bound on the
number of possible decompositions in stutter free ASDs. The construction
then proceeds as follows. Given a HSD Ch we guess a number of deductions
sufficient to include in particular the decompositions and the added deduction
of Proposition 4, and a test between two terms (which may be or not in
the guessed deductions). This is the set Dec(Ch). We then consider all
possible connections between an ASDD ∈ Dec(Ch) and Ch. For each resulting
connection C we consider all stutter free and composition-only ASDs in C?.
The set Sol(Ch) is the set of connections between D and a composition-
only stutter free ASD. We prove in Proposition 6 that Sol(Ch) contains in
particular Csf+

h thereby reducing our original goal of testing whether C?h ⊆ C ′h
?

to the simpler one Sol(Ch) ⊆ C ′h
?.

Lemma 9 Let C be a closed derivation, σ = TrC(C), and t ∈ Sub(σ). Let
it ∈ Ind be a minimal state such that t ∈ Sub(V(it)σ). Then either it is a
knowledge state or a composition state.

Proof. By minimality it cannot be a re-use state nor, by definition of de-
composition rules and the fact that we consider a subterm deduction system,
a decomposition state. Since the connection is closed it cannot be a reception
state. 2

In particular, let Ch = (Vh,Sh,Kh, Inh,Outh) be a HSD and consider
an ASD CI = (VI ,SI ,KI , InI ,OutI) in C?h. Let τ = TrCh◦CI(Ch) and σ =
TrCh◦CI(CI). We say that a subterm t of VI(IndI)σ is:

• h-bound if any minimal index i ∈ IndI such that t ∈ Sub(VI(i)σ) is an
input state (of CI);

• bound if there exists a non-variable subterm s of Ch such that (sτ)↓ = t;

• free otherwise.

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 79/94

Intuitively, h-bound terms are the terms built in the HSD, and free terms are
those that can be replaced by any other term without changing the satisfia-
bility of Sh, and bound terms are built by the attacker but may be necessary
for the satisfiability Sh. We give in the next lemma a few properties of free
and h-bound terms related to the deductions of the attacker. Note finally
that the definitions above imply that a constant in Cnew is free.

Lemma 10 Let Ch = (Vh,Sh,Kh, Inh,Outh) be a HSD, CI be in Csf
h with

CI = (VI ,SI ,KI , InI ,OutI), and σx = TrCh◦CI(Cx) for x ∈ {h, I}. For any
term t in Sub(σI) we have:

(i) If t is h-bound and t /∈ Sub(Kh ∪ KI) there is a composition state i′ ∈
Indh with Vh(i′)σh = t;

(ii) If t is h-bound then it is bound;

(iii) If i ∈ IndI is a decomposition state the term VI(i)σI is h-bound.

Proof. (i) Let C = (V ,S,K, In,Out) be a closed and satisfiable compo-
sition of CI and Ch. By Lemma 9 the minimal index i ∈ Ind such that
t ∈ Sub(V(i)σI) is either a knowledge or a composition state. Since
K = Kh ∪ KI and t /∈ Sub(Kh ∪ KI) it must be a composition state.
Since t is h-bound no minimal state in IndI in which t appears is a
deduction state. Since the connection preserves the ordering on IndI
the state i must be a composition state in Indh.

(ii) By the point (i) a h-bound term is either in Kh ∪KI or is composed in
some state i in Ch. In the first case we note that Cnew∩Sub(Ch) = ∅ thus
t h-bound implies that t ∈ Kh and hence is bound. In the second case
and by definition of deduction states there exists in Sh an equation
Vh(i) ?= f(Vh(i1), . . . ,Vh(in)) satisfied by σh. Since the state i is a
composition state we thus have Vh(i)σh = f(Vh(i1)σh, . . . ,Vh(in)σh) =
t. Hence t is bound.

(iii) Let i be a decomposition state and let i0 ≤ i be a minimal index
such that VI(i)σI ∈ Sub(VI(i0)σI). Since the equational theory is
subterm the index i0 cannot be a decomposition state by minimality of
i0 (and thus i0 6= i). If i0 were a knowledge state, there would exist
a constant c ∈ Cnew such that VI(i)σI ∈ Sub(VI(i0)σI) = Sub(c) and
thus we would have VI(i)σI = c = VI(i0)σI , which would contradict the
fact that the derivation is stutter free. By minimality of i0 it cannot
be a re-use state. Finally if i0 is a composition state we have in SI
an equation VI(i0) ?= f(VI(α1), . . . ,VI(αk)) which is satisfied by σI

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 80/94

in the empty theory. Thus VI(i)σI ∈ Sub(VI(i0)σI) implies either
VI(i)σI = VI(i0)σI , which contradicts CI stutter free, or VI(i)σI ∈
Sub(VI(α1)σI , . . . ,VI(αk)σI), which contradicts the minimality of i0.
Thus i0 must be an input state. Thus all minimal indexes i0 such
that VI(i)σI ∈ Sub(VI(i0)σI) are input states, and therefore VI(i)σI is
h-bound by definition.

2

Lemma 10 details the structure of ASDs. Indeed, since decomposition
can only be applied to deduce an h-bound term, and since h-bound terms
are bound, we conclude from Lemma 10 that there are at most |Sub(Ch)|
decomposition states in a stutter free symbolic derivation of C?h.

The rest of the proof consists in bounding the number of useful composi-
tions. We denote Ccomp

h the subset of Csf
h of ASD in which all deduction states

are composition states. Given a HSD Ch = (Vh,Sh,Kh, Inh,Outh) and k the
maximal arity of a public symbol we introduce two sets:

• Dec(Ch) is the set of ASDs C with only reception, reuse, and deduction
states, and less than |Sub(Ch) + 1| deduction states, less than |Inh|
reuse states, less than |Outh|+ k · (|Sub(Ch)|+ 1) + 1 input states, and
exactly one test equation.

• Sol(Ch) is the set ⋃
D∈Dec(Ch)

⋃
C∈(D◦Ch)comp

C ◦D

where the union is over all possible symbolic derivations and all con-
nections.

We note that by definition and since there is a finite number of public symbols
and equations, the set Dec(Ch) is finite.

Proposition 6 Csf+
h ⊆ Sol(Ch) holds for any HSD Ch.

Proof. Let Ch be a HSD, and let CI be in Csf+
h . By definition of Csf+

h there
exists C ′ ∈ Csf

h and Ct such that C ′ ◦ Ct = CI . Since CI is in Csf+
h the ASD Ct

has at most one deduction and one equality test.
By Proposition 3 there exists two ASDs Cc and Cd such that CI = Cc ◦ Cd

and such that in the connection Ch◦Cc◦Cd the deduction states of Cc (resp. Cd)
are composition states (resp. decomposition states), and let C ′h = Cd ◦ Ch =
(V ′h,S ′h,K′h, In′h,Out′h). Let us note d(CI) the derivation Cd. Using these
notations, let:

D =
⋃

CI∈Csf+
h

d(CI)

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 81/94

By Lemma 10, point iii for every CI ∈ Csf+
h the derivation d(CI) has at

most |Sub(Ch)| decomposition states that are present in C ′, and at most one
decomposition state in Ct. Furthermore it has at most one equality test (none
in C ′, one in Ct). Thus it is in Dec(Ch) and we have D ⊆ Dec(Ch). Since
CI is in Csf+

h , we additionally know that Cc is a stutter free derivation in the
connection C ′h ◦ Cc. Since all its deduction states are compositions, we have
that Cc ∈ (Ch ◦ Cd)comp. 2

5.4.4 Reduction of Sol(Ch) ⊆ C ′h
? to min<(Sol(Ch)) ⊆ C ′h

?

The ASDs in Sol(Ch) have the property that, when replacing a constant
in Cnew by the result of a sequence of compositions (this operation is called
opening) we obtain another ASD which can be connected to all the HSDs the
original ASD could be connected to (Lemma 11). Defining minimal ASDs in
Sol(Ch) to be the ones which, by this opening operation, generates all ASDs
in Sol(Ch) it is then trivial to check the inclusion Csf+

h ⊆ C ′h
?: it suffices to

check whether min<(Sol(Ch)) ⊆ C ′h
? (Lemma 12).

Opening of symbolic derivations. If C = (V ,S,K, In,Out) and C is a
subset of constants in K, we open C on C, and denote the operation openC(C)
when, for each c ∈ C:

• If i ∈ Ind is the first knowledge state with V(i) ?= c ∈ S, we remove
this equation from S and add i to the input states;

• we replace all occurrences of c in C by V(i).

Lemma 11 Let CI ∈ C?h with CI = (VI ,SI ,KI , InI ,OutI), let C ⊆ KI and
let Cc ∈ C ′h

sf for some HSD C ′h. If a connection Cc ◦ Ch ◦ openC(CI) is closed
then it is satisfiable.

Proof. Let us first introduce some notations. We denote:
Ch = (Vh,Sh,Kh, Inh,Outh)
Cc = (Vc,Sc,Kc, Inc,Outc)
C ′I = Cc ◦ openC(CI)
C ′I = (V ′I ,S ′I ,K′I , In′I ,Out′I)

By Proposition 2, point ii, the substitution TrCc◦Ch◦openC(CI)(Cc) satisfies Sc.
Since Cc is an ASD we have C ⊂ Cnew. Since Ch is a HSD every constant in
C is distinct from the constants appearing in Sh. Lemma 4 and σ |= Sh ◦ SI
then imply σδc,t |= Sh. By definition of ASDs no constant in C appears in
SI once the corresponding knowledge equations are removed by the opening.

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 82/94

Let σ′ = TrCc◦Ch◦openC(CI)(CI). For each memory state i ∈ IndI that contains
a constant c ∈ C we let tc = VI(i)σ′. We define δ as the replacement of each
constant c ∈ C by the term tc.

By induction on the indexes of the connection Cc◦Ch◦openC(CI) we have:

TrCc◦Ch◦openC(CI)(Cc ◦ Ch ◦ openC(CI)) = TrCh◦CI(Ch ◦ CI)δ

Thus every equation in Sh ∪ SI (minus the removed memory equations) is
satisfied by the composition with Cc. Since every equation in its unification
system is satisfied the connection Cc ◦ Ch ◦ openC(CI) is satisfiable. 2

Ordering on symbolic derivations. Given two symbolic derivations
CI = (VI ,SI ,KI , InI ,OutI) and C ′I = (V ′I ,S ′I ,K′I , In′I ,Out′I), we say that
CI < C ′I if:

• there exists C ⊆ KI , a stutter free symbolic derivation CC and a connec-
tion ϕ such that CC ◦ϕ openC(CI) = C ′I modulo a renaming of variables;

• or there exists a set of memory states I ⊆ Ind′I such that CI is equal
to C ′′I = (V ′′I ,S ′′I ,K′′I , In′′I ,Out′′I) where:

– V ′′I is the restriction of V ′I to the domain Ind′I \ I and S ′′I =
S ′I \

{
V ′I(i)

?= ci

}
i∈I

.

Since C ′′I is a symbolic derivation, we note that the memory states of C ′I that
are removed are never re-used nor employed in any deduction. Given that
C < C ′ implies that C has less indexes than C ′, it is clear that the relation <
is a well-founded ordering relation.

Lemma 12 Let Ch and C ′h be two HSDs. If min<(Sol(Ch)) ⊆ C ′h
? then

Sol(Ch) ⊆ C ′h
?.

Proof. Assume min<(Sol(Ch)) ⊆ C ′h
? and let CI be in Sol(Ch). By definition

of the ordering there exists a derivation C ′I ∈ min<(Sol(Ch)), a set of constants
C and a composition-only derivation Cc such that Cc ◦ openC(C ′I) = CI . By
hypothesis we have C ′I ∈ C ′h

?. By Lemma 11 this implies that CI is also in
C ′h

?. 2

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 83/94

5.4.5 Decision procedure for min<(Sol(Ch)) ⊆ C ′h
?

We conclude by giving a bound on the size of ASDs in min<(Sol(Ch)) (Propo-
sition 7). This bound implies the completeness of the Inclusion(Ch, C ′h) al-
gorithm. Since this algorithm rejects the inclusion when it finds an ASD in
C?h \ C ′h

? its soundness is trivial (Theorem 2). Our main theorem is then a
direct consequence.

Proposition 7 There exists a polynomial P such that for any HSD Ch every
CI ∈ min<(Sol(Ch)) is of size smaller than P (|Sub(Ch)|).

Proof. Let CI be a symbolic derivation in min<(Sol(Ch)). By definition of
Sol(Ch) there exists an ASD Cd with less than |Sub(Ch)|+ 1 deduction and a
composition-only symbolic derivation Cc such that CI = Cd ◦Cc. Consider the
HSD C ′h = Ch ◦ Cd and let C ′h = (V ′h,S ′h,K′h, In′h,Out′h) and σ = TrC′

h
◦Cc(C ′h ◦

Cc).
We have seen that basic narrowing provides a complete unification pro-

cedure for subterm convergent equational theories, and thus we can assume
that after a sequence of narrowing steps of length bounded by |Sub(Sh)|, for
every t ∈ Sub(S ′h) we have tσ = (tσ)↓ (applying narrowing steps) and the
number of different terms in C ′h is linear w.r.t the number of terms in Ch. In
the rest of the proof the notion of free term in Cc is w.r.t. the connection
with C ′h and considered after the narrowing steps are applied.

Claim. If there exists a deduction state i in Cc such that Vc(i)σ is free then
Cc is not minimal.

Proof of the claim. Assume that there exists a deduction state i in Cc
such that t = Vc(i)σ is free and let c be a new constant. Let us consider the
symbolic derivation C ′I equal to CI but on state i which becomes a memory
state with an equation V ′I(i)

?= c. Noting that after guessing the narrowing
steps the unification system S ′h is satisfied by σ in the empty theory we have:

• Since t is free, for any term s ∈ Sub(S ′h) we have (sσ)δt,c = s(σδt,c) by
Lemma 5

• By induction on the states using the first point, TrC′I◦C′h(C ′I◦C ′h) = σδt,c;

• As a consequence, C ′I is also in C ′h
?.

3

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 84/94

We are now able to conclude: since by definition C ′I < CI the symbolic
derivation CI is not minimal. Thus by contrapositive reasoning, all minimal
solutions are such that the result of a composition is bounded. They have
thus less than |Sub(C ′h)| composition steps. In the worst case this implies
that there is k · |Sub(C ′h)| memory or re-use states. Since the connection
with C ′h must be closed, we can bound the number of reception states by the
number of output state of C ′h. 2

From the proof we note that the polynomial P depends on the equational
theory and on the public symbols.

Theorem 2 (Inclusion of C?h into C ′h
?) If Algorithm Inclusion(Ch, C ′h) always

returns Sat then C?h ⊆ C ′h
?.

Proof. On the one hand, we note that in particular the algorithm guesses
all the symbolic derivations in min<(Sol(Ch)). Thus, if it always returns
Sat we have Sol(Ch) ⊆ C ′h

? by Lemma 12. Thus by Proposition 6 we have
Csf+
h ⊆ C ′h

?. Proposition 5 then implies C?h ⊆ C ′h
?. On the other hand, if the

algorithm fails it has found one ASD in C?h \ C ′h
? and thus the inclusion does

not hold. 2

Inclusion(Ch, C ′h)

Algorithm. Guess a symbolic derivation CI of size less than P (Ch) and a
connection ϕ between CI and Ch

Output: If CI ◦ Ch satisfiable implies CI ◦ C ′h satisfiable then Sat, else Fail.

As a direct consequence we obtain the announced theorem.

Theorem 1. Symbolic equivalence is decidable for subterm deduction sys-
tems.

5.4.6 Discussion on complexity

The exact complexity of the inclusion algorithm depends on the assumptions
made about the class of HSDs we consider as well as on the modeling of
cryptographic primitives.

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 85/94

HSDs representing protocols We have studied in [32] the conditions un-
der which a protocol narration (i.e., a sequence of messages in the Alice&Bob
notation and the specification of the initial knowledge of participants) can
be turned into symbolic derivations of the type presented in Example 5.2.
In particular, the compilation method described will succeed in producing
a HSD for any subterm deduction system when the protocol narration is
executable.

The HSDs produced have a property relevant to the complexity analysis
of the equivalence problem. In this case the unification system contains only
equations that are equalities between contexts over the input variables of the
symbolic derivation. This property is always true for ASDs by definition.

In the Inclusion(Ch, C ′h) algorithm, once the connection is guessed the
symbolic derivations CI ◦ Ch and CI ◦ C ′h are closed. By Lemma 6 this implies
that all input variables of the honest and attacker symbolic derivations are
instantiated by ground terms, and thus the unification systems are actually
sets of equalities between ground terms. These equalities can be checked in
polynomial time.

More formally and when I is a subterm deduction system let us define
COMPILED_EQ to be the set of instances of the I-symbolic equivalence
problem in which the input HSDs Ch = (Vh,Sh,Kh, Inh,Outh) are such that
Var(Sh) ⊆ Var(Vh(Indh)).

Corollary 1 COMPILED_EQ is in coNP .

We believe that COMPILED_EQ covers most of the equivalence prob-
lems encountered when analyzing cryptographic protocols, i.e., those ob-
tained by compilation of an Alice&Bob specification [32].

Example 5.7 One may add to the HSD representing the role B in Exam-
ple 5.2 an equation x5

?= ae(y, x3) to model that B can test that the received
message is a proper encryption with his public key. This test introduces a
variable which is not in the image of V and thus testing the equivalence of
the modified HSD with another one is not in COMPILED_EQ.

We however note that an alternative modeling would have been to add
a test symbol to the signature. For instance if we mandate that one needs
the public key to check whether a message is a proper encryption we would
add the public symbols check_enc (of arity 2) and > (of arity 0) with the
equation:

check_enc(ae(x, y), y) = >
With this model we add to the HSD modeling B in Example 5.2 an equation
that can only be satisfied when the received message x5 is a proper encryption

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 86/94

with public key pk(B):

check_enc(x5, x3) ?= >

This example also demonstrates why we believe the class COM-
PILED_EQ is sufficient since the ultimate conclusion of [32] is that when
all possible operations are made explicit in the deduction system every ex-
ecutable protocol narration is compiled into a HSD that satisfies the con-
straints of COMPILED_EQ.

Modeling issues In relation with the discussion in Section 5.3.3 one could
choose to model non silently failing cryptographic operations. In this case the
attacker can build more discriminating tests based on the success or failure
of the operations. Hence we have to modify the decision problem accordingly
as follows.

Let us furthermore assume that all rules in the rewriting system are of
the form f(t1, . . . , tn) → t with f a public symbol. In this case the fact
that application of the function modeled by f succeeds or fails is represented
symbolically by the success or failure of a rewrite step.

To solve the equivalence problem corresponding to this cryptographic
hypothesis one has to:

• Change the I-symbolic equivalence problem by additionally requiring
that the composition and decomposition states of CI are the same in
the two connections with Ch and C ′h;

• Change the inclusion algorithm corresponding to this new equiva-
lence problem by adding a step in which the decomposition states are
guessed.

Once the guesses are performed we can assume no other rewrite rule is
applied on a term in the ASD. As we have seen in Section 5.3.3 it makes
sense in this case to also assume that the rewriting steps that are applied on
the terms in the HSD are fixed. As a consequence, checking the satisfiability
of a connection is reduced to checking the satisfiability of unification systems
when no equation is applied, i.e., in the empty theory. This problem is
polynomial, and thus in this case the symbolic equivalence problem is again
in coNP . In this case the HSDs do not have to be obtained by compilation
of an Alice&Bob specification.

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 87/94

5.4.7 Extension to ground right-hand side

The definition of subterm equational theories in [12, 13] is slightly more
general than the one we employed. In addition to rewrite rules l → r such
that r is a subterm of l, a rewrite rule l → r may also be such that r is a
ground term. In order to extend our results to this case we have to assume
that every HSD contains in its memory states every ground right-hand side of
the rewrite rules. As long as these added memory states are not in Out, this
change does not alter the set of solutions of a HSD. In return this construction
permits us to extend the set of guessed terms to the subterms of the ground
right-hand sides of rewrite rules. The definitions of stutter free derivations,
composition and decomposition states are left as is. We note that the proof
of Lemma 9 is not changed with this new definition of subterm deduction
system. For Lemma 10, we note that point i assumes conditions that are
not satisfied by the added terms (which are bound), and that having added
the ground right-hand sides of the rewrite rules implies point iii. The proof
of point ii is unchanged. With our definition of decomposition rules, the rest
of the proofs do not change.

5.5 Concluding remarks
We believe that symbolic derivations offer an interesting framework to study
and prove equivalence-based security properties. The decision procedure de-
rived here is simple but cannot be implemented as such. Future work on
this topic will be focused on the implementability of this decision procedure,
and in particular on giving conditions on the deduction system such that the
AVANTSSAR tools can be easily extended to solve equivalence problems.

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 88/94

6 Conclusions
Our results show that it is possible in many situations to model service be-
haviors and their components or aspects (policies, workflows, databases) as
transitions systems, Horn clauses or constraints and provide effective algo-
rithms to validate complex security properties on these models.

Horn clauses models for databases introduce new undesired service behav-
iors and therefore may generate false positives. Hence, in future works, we
may investigate techniques for limiting their impact. Reachability problems
that stem from service verification can also be encoded as constraints and
existing modularity results about constraint satisfiability can be exploited in
order to combine access control calculus and message-based transitions. More
work is necessary in order to address more complex workflows and policies,
and to prove equivalence properties defined through indistinguishability.

FP7-ICT-2007-1
Project No. 216471

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 89/94

References
[1] M. Abadi, M. Baudet, and B. Warinschi. Guessing attacks and the

computational soundness of static equivalence. In L. Aceto and A. In-
gólfsdóttir, editors, Foundations of Software Science and Computation
Structures, 9th International Conference, FOSSACS 2006, Held as Part
of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2006, Vienna, Austria, March 25-31, 2006, Proceedings, volume
3921 of Lecture Notes in Computer Science, pages 398–412. Springer,
2006.

[2] M. Abadi and C. Fournet. Mobile values, new names, and secure com-
munication. In Proceedings of the Principle of Programming Languages
Conference, pages 104–115, 2001.

[3] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The
spi calculus. In ACM Conference on Computer and Communications
Security, pages 36–47, 1997.

[4] M. Abadi and P. Rogaway. Reconciling two views of cryptography (the
computational soundness of formal encryption). J. Cryptol., 20(3):395–
395, 2007.

[5] A. Armando and L. Compagna. SAT-based Model-Checking for Secu-
rity Protocols Analysis. International Journal of Information Security,
7(1):3–32, 2008.

[6] N. Asokan, V. Shoup, and M. Waidner. Asynchronous protocols for
optimistic fair exchange. In Proceedings of the IEEE Symposium on
Research in Security and Privacy, pages 86–99, 1998. citeseer.nj.
nec.com/asokan98asynchronous.html.

[7] AVANTSSAR. Deliverable 3.3: Attacker models. Available at http:
//www.avantssar.eu, 2008.

[8] AVANTSSAR. Deliverable 2.3: ASLan final version with dynamic ser-
vice and policy composition. Available at http://www.avantssar.eu,
2010.

[9] AVISPA. Deliverable 2.1: The High-Level Protocol Specification Lan-
guage. http://www.avispa-project.org, 2003.

[10] D. Basin and H. Ganzinger. Automated complexity analysis based on
ordered resolution. J. ACM, 48(1):70–109, 2001.

FP7-ICT-2007-1
Project No. 216471

citeseer.nj.nec.com/asokan98asynchronous.html
citeseer.nj.nec.com/asokan98asynchronous.html
http://www.avantssar.eu
http://www.avantssar.eu
http://www.avantssar.eu
http://www.avispa-project.org

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 90/94

[11] D. Basin, S. Mödersheim, and L. Viganò. OFMC: A symbolic model
checker for security protocols. International Journal of Information Se-
curity, 4(3):181–208, 2005.

[12] M. Baudet. Deciding security of protocols against off-line guessing at-
tacks. In V. Atluri, C. Meadows, and A. Juels, editors, ACM Conference
on Computer and Communications Security, pages 16–25. ACM, 2005.

[13] M. Baudet. Sécurité des protocoles cryptographiques : aspects logiques
et calculatoires. Thèse de doctorat, Laboratoire Spécification et Vérifi-
cation, ENS Cachan, France, Jan. 2007.

[14] M. Y. Becker, C. Fournet, and A. D. Gordon. Security Policy Asser-
tion Language (SecPAL). http://research.microsoft.com/en-us/
projects/SecPAL/.

[15] J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis.
Refinement types for secure implementations. In CSF, pages 17–32,
2008.

[16] K. Bhargavan, C. Fournet, A. D. Gordon, and R. Pucella. Tulafale:
A security tool for web services. In F. S. de Boer, M. M. Bonsangue,
S. Graf, and W. P. de Roever, editors, Formal Methods for Components
and Objects, Second International Symposium, FMCO 2003, Leiden,
The Netherlands, November 4-7, 2003, Revised Lectures, volume 3188
of Lecture Notes in Computer Science, pages 197–222. Springer, 2003.

[17] B. Blanchet. An efficient cryptographic protocol verifier based on prolog
rules. In Proceedings of CSFW’01, pages 82–96. IEEE Computer Society
Press, 2001.

[18] B. Blanchet. Automatic proof of strong secrecy for security protocols. In
IEEE Symposium on Security and Privacy, pages 86–. IEEE Computer
Society, 2004.

[19] B. Blanchet. Automatic verification of correspondences for security pro-
tocols. Journal of Computer Security, 17(4):363–434, July 2009.

[20] B. Blanchet, M. Abadi, and C. Fournet. Automated verification of se-
lected equivalences for security protocols. In LICS, pages 331–340. IEEE
Computer Society, 2005.

[21] C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. R. Nielson.
Static validation of security protocols. Journal of Computer Security,
13(3):347–390, 2005.

FP7-ICT-2007-1
Project No. 216471

http://research.microsoft.com/en-us/projects/SecPAL/
http://research.microsoft.com/en-us/projects/SecPAL/

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 91/94

[22] Y. Boichut, P.-C. Heam, O. Kouchnarenko, and F. Oehl. Improvements
on the Genet and Klay Technique to Automatically Verify Security Pro-
tocols. In Proc. Int. Workshop on Automated Verification of Infinite-
State Systems (AVIS’2004), joint to ETAPS’04, pages 1–11, Barcelona,
Spain, 2004. The final version will be published in EN in Theoretical
Computer Science, Elsevier.

[23] Y. Boichut, P.-C. Héam, O. Kouchnarenko, and F. Oehl. Improvements
on the Genet and Klay technique to automatically verify security pro-
tocols. In AVIS’04, pages 1–11, 2004.

[24] M. Boreale, R. D. Nicola, and R. Pugliese. Proof techniques for crypto-
graphic processes. In LICS, pages 157–166, 1999.

[25] L. Bozga, Y. Lakhnech, and M. Perin. Hermes: An automatic tool for
the verification of secrecy in security protocols. In CAV’03, LNCS 2725,
pages 219–222. Springer-Verlag, 2003.

[26] L. Bozga, Y. Lakhnech, and M. Perin. Pattern-based abstraction for
verifying secrecy in protocols. In Proceedings of TACAS 2003, LNCS
2619. Springer-Verlag, 2003.

[27] P. Broadfoot, G. Lowe, and A. Roscoe. Automating data independence.
In Proceedings of Esorics 2000, LNCS 1895, pages 175–190. Springer-
Verlag, 2000.

[28] R. Canetti. Universally composable security: A new paradigm
for cryptographic protocols. In Proceedings of FOCS 2001, pages
136–145. IEEE Computer Society, 2001. Long version available as
http://eprint.iacr.org/2000/067.ps.

[29] V. Cheval, H. Comon-Lundh, and S. Delaune. Automating security
analysis: Symbolic equivalence of constraint systems. In Automated
Reasoning, 5th International Joint Conference, IJCAR 2010, Edinburgh,
UK, July 16-19, 2010. Proceedings, volume 6173 of Lecture Notes in
Computer Science. Springer, 2010.

[30] Y. Chevalier and M. Kourjieh. On the decidability of (ground)
reachability problems for cryptographic protocols (extended version).
Technical report, INRIA, 2008. available at http://hal.inria.fr/
inria-00392226_v1/.

[31] Y. Chevalier and M. Rusinowitch. Combining intruder theories. In
L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and M. Yung,

FP7-ICT-2007-1
Project No. 216471

http://hal.inria.fr/inria-00392226_v1/
http://hal.inria.fr/inria-00392226_v1/

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 92/94

editors, ICALP, volume 3580 of Lecture Notes in Computer Science,
pages 639–651. Springer, 2005.

[32] Y. Chevalier and M. Rusinowitch. Compiling and securing cryptographic
protocols. Inf. Process. Lett., 110(3):116–122, 2010.

[33] Y. Chevalier and L. Vigneron. Automated Unbounded Verification of
Security Protocols. In Proceedings of CAV’2002, LNCS 2404, pages 324–
337. Springer, 2002. http://www.loria.fr/~vigneron/Work/papers/
ChevalierV-CAV02.ps.gz.

[34] H. Comon-Lundh and V. Cortier. Computational soundness of observa-
tional equivalence. In ACM Conference on Computer and Communica-
tions Security, pages 109–118, 2008.

[35] V. Cortier and S. Delaune. A method for proving observational equiva-
lence. In Proceedings of the 22nd IEEE Computer Security Foundations
Symposium (CSF’09), pages 266–276. IEEE Computer Society Press,
2009.

[36] S. Delaune, S. Kremer, and M. D. Ryan. Verifying privacy-type proper-
ties of electronic voting protocols: A taster. In D. Chaum, M. Jakobsson,
R. L. Rivest, P. Y. A. Ryan, J. Benaloh, M. Kutyłowski, and B. Adida,
editors, Towards Trustworthy Elections – New Directions in Electronic
Voting, volume 6000 of Lecture Notes in Computer Science, pages 289–
309. Springer, May 2010.

[37] J. DeTreville. Binder, a logic-based security language. In IEEE Sympo-
sium on Security and Privacy, pages 105–113, 2002.

[38] Y. Ding and P. Horster. Undetectable on-line password guessing attacks.
Operating Systems Review, 29(4):77–86, 1995.

[39] D. Dolev and A. Yao. On the Security of Public-Key Protocols. IEEE
Transactions on Information Theory, 2(29), 1983.

[40] N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of
bounded security protocols. In Proceedings of the Workshop on Formal
Methods and Security Protocols, 1999.

[41] S. Even and O. Goldreich. On the security of multi-party ping-pong
protocols. In FOCS, pages 34–39, 1983.

FP7-ICT-2007-1
Project No. 216471

http://www.loria.fr/~vigneron/Work/papers/ChevalierV-CAV02.ps.gz
http://www.loria.fr/~vigneron/Work/papers/ChevalierV-CAV02.ps.gz

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 93/94

[42] T. Genet and F. Klay. Rewriting for cryptographic protocol verifica-
tion. In Proceedings of CADE’00, LNCS 1831, pages 271–290. Springer-
Verlag, 2000.

[43] Y. Gurevich and I. Neeman. DKAL: Distributed-knowledge authoriza-
tion language. In Proceedings of CSF 2008, pages 149–162. IEEE Com-
puter Society, 2008.

[44] Y. Gurevich and I. Neeman. The logic of infons. Bulletin of the EATCS,
(98):150–178, 2009.

[45] J. Heather, G. Lowe, and S. Schneider. How to prevent type flaw at-
tacks on security protocols. In Proceedings of The 13th Computer Secu-
rity Foundations Workshop (CSFW’00). IEEE Computer Society Press,
2000.

[46] J.-M. Hullot. Canonical forms and unification. In W. Bibel and R. A.
Kowalski, editors, CADE, volume 87 of Lecture Notes in Computer Sci-
ence, pages 318–334. Springer, 1980.

[47] H. Hüttel. Deciding framed bisimilarity. Presented at the INFINITY’02
workshop, June 2002.

[48] R. Küsters and M. Tuengerthal. Universally Composable Symmetric En-
cryption. In Proceedings of the 22nd IEEE Computer Security Founda-
tions Symposium (CSF 2009), pages 293–307. IEEE Computer Society,
2009.

[49] G. Lowe. Breaking and Fixing the Needham-Shroeder Public-Key Pro-
tocol Using FDR. In T. Margaria and B. Steffen, editors, Proceedings
of TACAS’96, LNCS 1055, pages 147–166. Springer-Verlag, 1996.

[50] G. Lowe. Casper: a Compiler for the Analysis of Security Protocols.
Journal of Computer Security, 6(1):53–84, 1998. http://web.comlab.
ox.ac.uk/oucl/work/gavin.lowe/Security/Casper/.

[51] J. K. Millen and V. Shmatikov. Constraint solving for bounded-process
cryptographic protocol analysis. In Proceedings of the ACM Conference
on Computer and Communications Security CCS’01, pages 166–175,
2001.

[52] S. Mödersheim. On the Relationships between Models in Protocol Veri-
fication (extended version). Technical Report 512, ETH Zurich, Dep. of
Computer Science, 2006. Updated version in Journal of Information and
Computation, 206(2–4).

FP7-ICT-2007-1
Project No. 216471

http://web.comlab.ox.ac.uk/oucl/work/gavin.lowe/Security/Casper/
http://web.comlab.ox.ac.uk/oucl/work/gavin.lowe/Security/Casper/

D3.4: Abstraction and Compositional Reasoning Techniques for Service
Analysis 94/94

[53] S. Mödersheim. On the Relationships between Models in Protocol Ver-
ification. Journal of Information and Computation, 206(2–4):291–311,
2008. http://dx.doi.org/10.1016/j.ic.2007.07.006.

[54] S. Mödersheim. Verification based on set-abstraction using the
AIF framework. Technical Report IMM-Technical report-2010-09,
DTU/IMM, 2010. www.imm.dtu.dk/~samo.

[55] M. Rusinowitch and M. Turuani. Protocol insecurity with finite number
of sessions is NP-complete. In Proceedings of CSFW’01, pages 174–190.
IEEE Computer Society Press, 2001.

[56] M. Rusinowitch and M. Turuani. Protocol Insecurity with Finite Num-
ber of Sessions and Composed Keys is NP-complete. Theoretical Com-
puter Science, 299:451–475, 2003. http://www.avispa-project.org.

[57] B. Schneier. Applied cryptography. Addison-Wesley, 1996.

[58] SEVECOM. Deliverable 2.1-App.A: Baseline Security Specifications.
www.sevecom.org, 2009.

[59] G. Steel. Towards a formal security analysis of the Sevecom API. In
ESCAR. 2009.

[60] G. Steel. Abstractions for verifying key management apis. In SecReT.
2010.

[61] C. Weidenbach. Towards an automatic analysis of security protocols.
In H. Ganzinger, editor, Proceedings of the 16th International Confer-
ence on Automated Deduction: CADE’99, LNCS 1632, pages 378–382.
Springer-Verlag, Berlin, 1999.

[62] C. Weidenbach, R. A. Schmidt, T. Hillenbrand, R. Rusev, and D. Topic.
System description: Spass version 3.0. In CADE, pages 514–520, 2007.

FP7-ICT-2007-1
Project No. 216471

http://dx.doi.org/10.1016/j.ic.2007.07.006
www.imm.dtu.dk/~samo
http://www.avispa-project.org
www.sevecom.org

	Introduction
	Set-Based Abstraction
	AIF and the Concrete Model
	A Running Example
	Formal Definition of AIF
	Syntactic Sugar
	Inconsistent Rules

	Set-Based Abstraction
	Definition of the Abstraction
	Term Implication Rules
	Translation to Abstract Rules
	The Example

	Soundness
	Encoding Term Implication
	Decidability
	Experimental Results
	Concluding Remarks

	Encoding security-policy clauses
	Preliminaries
	Policy engines and message terms
	Encoding policy level computations
	TA only.
	TA, TD and type-1 theories
	Correctness of the encoding

	One-step Transition Decision Procedures
	Logical background
	Logical model of ASLan
	States and transitions in ASLan
	ASLan specifications
	ASLan goals

	Relevant specifications
	Web services and aspect-based programming
	Separation of the different aspects
	Web Service specifications (WS specifications)

	Reachability problems
	Definition
	Reachability problems for WS-specifications
	The case of ground reachability problems

	Process equivalence
	Introduction
	Definitions
	Terms
	Subterm Deduction Systems

	Symbolic Derivations
	Definitions
	Solutions of symbolic derivations
	Relation with static equivalence

	The case of a subterm deduction system
	(De)composition rules and stutter free derivations
	Reduction of C hC h' to C hsf+C h'
	Reduction of C hsf+C h' to Sol(C h) C h'
	Reduction of Sol(C h) C h' to min<(Sol(C h)) C h'
	Decision procedure for min<(Sol(C h)) C h'
	Discussion on complexity
	Extension to ground right-hand side

	Concluding remarks

	Conclusions

