
Automated VAlidatioN of Trust and Security
of Service-oriented ARchitectures

FP7-ICT-2007-1, Project No. 216471

www.avantssar.eu

Deliverable D2.2
ASLan v.2 with static service and policy

composition

Abstract
This deliverable describes ASLan v.2, the second version of the ASLan lan-
guage for specifying security-sensitive service-oriented architectures, the asso-
ciated security policies, and their trust and security properties. In particular,
ASLan v.2 allows for the formal specification of static service and policy com-
position.

Deliverable details
Deliverable version: v1.0 Classification: public
Date of delivery: 08.07.2009 Due on: 30.06.2009
Editors: UNIVR, ETH Zurich, UGDIST, IBM, IEAT, SAP, SIEMENS
(principal editors).
INRIA, UPS-IRIT, OpenTrust (secondary editors) Total pages: 92

Project details
Start date: January 01, 2008 Duration: 36 months
Project Coordinator: Luca Viganò
Partners: UNIVR, ETH Zurich, INRIA, UPS-IRIT, UGDIST, IBM,

OpenTrust, IEAT, SAP, SIEMENS

http://www.avantssar.eu
www.avantssar.eu


D2.2: ASLan v.2 2/92

Contents
1 Introduction 5

2 ASLan v.1.1: an extension of ASLan v.1 8
2.1 Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Universally Quantified Horn Clauses . . . . . . . . . . . . . . 10
2.3 Micro and Macro Steps . . . . . . . . . . . . . . . . . . . . . . 11

3 ASLan v.2 gentle introduction and syntax 12
3.1 Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6 Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.7 Extended Backus-Naur Form . . . . . . . . . . . . . . . . . . . 18
3.8 Prelude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 ASLan v.2 semantics 22
4.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Translation of entities . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Translation of Types and Symbols . . . . . . . . . . . . . . . . 25
4.4 Translation of Horn Clauses . . . . . . . . . . . . . . . . . . . 26
4.5 Translation of Equalities . . . . . . . . . . . . . . . . . . . . . 27
4.6 Representing the Control Flow . . . . . . . . . . . . . . . . . . 28
4.7 Step Compression . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.8 Translation of Statements . . . . . . . . . . . . . . . . . . . . 31

4.8.1 Grouping . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.8.2 Variable assignment . . . . . . . . . . . . . . . . . . . . 33
4.8.3 Generation of fresh values . . . . . . . . . . . . . . . . 34
4.8.4 Entity instantiation . . . . . . . . . . . . . . . . . . . . 35
4.8.5 Symbolic entity instantiation . . . . . . . . . . . . . . . 37
4.8.6 Transmission statements . . . . . . . . . . . . . . . . . 39
4.8.7 Fact introduction . . . . . . . . . . . . . . . . . . . . . 39
4.8.8 Fact retraction . . . . . . . . . . . . . . . . . . . . . . 40
4.8.9 Branch . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.8.10 Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.8.11 Select . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.8.12 Assert . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.9 Translation of Guards . . . . . . . . . . . . . . . . . . . . . . 48

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 3/92

4.10 Translation of Terms . . . . . . . . . . . . . . . . . . . . . . . 48
4.11 Translation of the Body Section . . . . . . . . . . . . . . . . . 51
4.12 Translation of Transmission Events . . . . . . . . . . . . . . . 51
4.13 Translation of Goals . . . . . . . . . . . . . . . . . . . . . . . 53

4.13.1 Channels as Goals . . . . . . . . . . . . . . . . . . . . 53

5 ASLan v.2 examples 57
5.1 Car registration . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Loan Origination Process . . . . . . . . . . . . . . . . . . . . . 68
5.3 Digital contract signing . . . . . . . . . . . . . . . . . . . . . . 73
5.4 Identity Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Conclusion 90

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 4/92

List of Tables
1 Notations supported by ASLan v.2 . . . . . . . . . . . . . . . 17
2 Substitutions done by the adaptGuard function . . . . . . . . 49
3 Translation of goal operators . . . . . . . . . . . . . . . . . . . 54

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 5/92

1 Introduction
This deliverable describes ASLan v.2, the second version of the ASLan lan-
guage. ASLan is a formal language for specifying security-sensitive service-
oriented architectures, the associated security policies, and their trust and
security properties. The syntax and semantics of ASLan v.1, the first version
of the language, was described in deliverable D2.1 [3] by extending the Inter-
mediate Format IF [7], a specification language that several of the partners
of the AVANTSSAR consortium developed in the context of the AVISPA
project. IF is an expressive language for specifying security protocols and
their properties, based on multiset rewriting. Moreover, IF comes with ma-
ture tool support, namely the AVISPA Tool and all of its back-ends, which
provide the basis for the back-ends of the AVANTSSAR Platform that we
have been developing. As described in detail in [3], ASLan v.1 extends IF
with a number of important features so as to express diverse security policies,
security goals, communication and intruder models at a suitable abstraction
level, and thereby allow for the formal specification and analysis of complex
services and service-oriented architectures. Most notably, ASLan v.1 extends
IF with:

Horn Clauses: In ASLan, invariants of the system can be defined by a
set of Horn clauses. Horn clauses allow us not only to capture the
deduction abilities of the attacker in a natural way, but also, and most
importantly, they allow for the incorporation of authorization logics in
specifications of services.

LTL: In ASLan, complex security properties can be specified in Linear Tem-
poral Logic. As shown, for instance, in [5], this allows us to express
complex security goals that services are expected to meet as well as
assumptions on the security offered by the communication channels.

ASLan v.2 is conceptually more high-level than ASLan v.1 and is defined
by translation to ASLAN v.1.1, which is an extension of ASLan v.1 with
some useful features that make it suitable as a target of the translation, and
which is the actual input language to the validation tools that comprise the
AVANTSSAR Platform. The platform will thus support both ASLan v.1.1
and ASLan v.2, with updates and extensions to either of them whenever
necessary. In particular, we have been developing ASLan v.2 to achieve the
following design goals:

• The language should be expressive enough to model a wide range of
service-oriented architectures while at the same time allow for succinct
specifications.

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 6/92

• The language should allow for the (architecture-level) specification of
services at a high level of abstraction in order to reduce model com-
plexity as much as possible.

• The language should be close to specification languages for security
protocols and web services, but also to procedural and object-oriented
programming languages, so that it can be employed by users who are
not experts of formal protocol/service specification languages.

In order to formally model static service and policy composition, ASLan
v.2 introduces a number of improvements with respect to v.1, such as:

• Control flow constructs (e.g. while and if) allow for better readability
and conciseness of the specifications, and make the specification easier
for modelers who are already familiar with programming languages.

• Modularity is supported by the use of entities. Each entity is specified
separately and can then be instantiated and composed with others.
This allows the specifier, in particular, to localize policies in each entity
by clarifying, for instance, who is responsible to grant or deny certain
authorization requests as well as the various trust relationships between
entities.

• Furthermore, ASLan v.2 provides easier ways to specify communication
and service compositionality by using a suitable, intuitive notation for
channels that are used both as service assumptions and as service goals.

Structure of the document In § 2, we describe ASLan v.1.1, which
extends ASLan v.1 of D2.1 [3] so as to be suitable as a target language for
the translation of ASLan v.2.

In § 3, we give a gentle introduction to ASLan v.2 describing its syntax,
while in § 4 we give a procedure for translating ASLan v.2 specifications into
ASLan v.1.1 specifications. This procedure therefore defines the semantics
of ASLan v.2 in terms of ASLan v.1.1, and will serve as a basis for the imple-
mentation of the translation software to be integrated in the AVANTSSAR
Platform.

In § 5, we then assess ASLan v.2 against a selection of problem cases
taken from Deliverable D5.1 [5]; see also Deliverable D2.1 [3], in which we
described the requirements for ASLan that we extracted from the case studies
and the corresponding features of ASLan.

We conclude in § 6 by briefly summing up and highlighting the main
features that will be included in the next versions of ASLan in future de-
liverables. In particular, ASLan v.3, the final version of the language to be

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 7/92

delivered in D2.3, will include dynamic service and policy composition, so
that the language and the whole AVANTSSAR Platform will be applicable
for the full-fledged specification and analysis of the case studies.

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 8/92

2 ASLan v.1.1: an extension of ASLan v.1
As explained above, ASLan v.2 is conceptually more high-level than ASLan v.1
and is defined by translation to an extension of ASLan v.1, called ASLan v.1.1,
which is the actual input language to the validation tools that comprise the
AVANTSSAR Platform. The platform will thus support both languages,
with updates and extensions to either of them whenever necessary.

In this section, we describe ASLan v.1.1.

2.1 Typing
Types in our specification language serve two main purposes. First, like in
programming languages, types can be very helpful to avoid mistakes in the
specification. Second, the typing can be helpful for the tools to reduce the
size of the transition system by excluding ill-typed actions of the intruder.
While this in general means a restriction that can exclude attacks, for many
cases typing can be justified [9]. Moreover, the user may of course also choose
to deliberately abstract from type-flaw attacks (even though the user cannot
justify it).1

In the first version of ASLan (of deliverable D2.1 [3]) we had simply
defined that variables can only be instantiated with terms of the respective
types. While this is intuitively clear, the formal definition of a type system
can be subtle and this definition is thus crucial for the precise interpretation.
Therefore, we have decided to formally define the type system as part of this
update.

• If a model contains a set of basic types β1, . . . , βn such as agent and
nonce, we assume that there exists an infinite number of constants of
each such type and write Cβi for each such set.

• We assume that Cβ1 ∩ Cβ2 = ∅ for β1 6= β2. Note that Cβ is only part of
all values that have type β (this latter set is defined below as Lβ) but
rather the set of constants whose primary type is β (but, due to sub-
typing, a constant may be part of other types as well). The disjointness
of the C· ensures that each constant has a unique primary type. For
example, the “main” message type msg is a basic type in the sense
of this definition, and the type agent is a subtype of it, even though
Cagent ∩ Cmsg = ∅.

1We also allow the option that a typed specification can be analyzed in an untyped
model, i.e., the specification contains the types to check that the specification is well-
formed, but the validation is performed ignoring the types.

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 9/92

• For every declaration c : β that constant c has type β in a given ASLan
specification, we assume that c ∈ Cβ.

• The only non-basic types in our setting are sets and tuples. We do not
allow constants of non-basic types such as msg set.

• We now inductively define the set Lτ of terms that have type τ , i.e.
each Lτ is the least set that satisfies the following properties:

– First, for all basic types Cβ ⊆ Lβ.
– Then, for a function f that has type τ1× . . . τn → τ and any terms
t1 ∈ Lτ1 , . . . , tn ∈ Lτn , we have f(t1, . . . , tn) ∈ Lτ .

– If τ1 < τ2 (sub-typing), then Lτ1 ⊆ Lτ2 . (Note this is extending
Lτ2 .)

– If S ⊆ Lτ and S is finite, then S ∈ Lτ set.
– Finally, Lτ1,...,τn = Lτ1 × . . .× Lτn .

• Each variable of type τ can be assigned to any term of the set Lτ , and
we rule out all other interpretations.

• We require that Lτ is closed under ≈, i.e. the algebraic properties do
not imply the equality of terms of different types.

• As a consequence, for instance, exclusive or, denoted ⊕, should be a
function of type msg × msg → msg, and not a polymorphic one of type
α × α → α. The reason is the type of the neutral element e: it must
be of type msg.

• Polymorphic types are disallowed for constants or variables, and only
allowed for functions, e.g. add(α set, α) : (α set). This affects
the definition of all Lτ where τ is an instance of the return type:
f(t1, . . . , tn) ∈ Lτ for every t1 ∈ Lτ1 , . . . , tn ∈ Lτn for every f(τ1, . . . , τn) :
τ .

Finally, we allow for a special kind of typing that is merely a syntactical
abbreviation: compound types. This concept has been first introduced in
HLPSL/IF and allows one to specify the format of message terms as a type.
For instance, we may declare

M : crypt(public_key,pair(agent,msg)).
This constrains the set of values that can be substituted for M to those of

the appropriate message format. More generally, the declaration X: f(t1,

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 10/92

..., tn) is just an abbreviation for X1:t1, ..., Xn:tn for new vari-
ables Xi and replacing all occurrences of X in its syntactical scope with
f(X1,...,Xn). This replacement must, of course, be repeated recursively
if any of the ti is itself a compound type.

2.2 Universally Quantified Horn Clauses
As a second extension to the ASLan v.1 presented in D2.1 [3], we describe
here a slight generalization of Horn clauses. So far, we have allowed the
specification of Horn clauses where the variables occurring on the left-hand
side of the clause are a proper subset of the right-hand side variables. This
excludes Horn clauses like the following:

trustedOn(A,X) :− trusted(B).delegates(B,A)

Here, X is a “free” variable of the left-hand side which is forbidden by the
ASLan v.1 of D2.1. Such a situation is, however, quite common, especially
for rules with an empty right-hand side; intuitively, one would specify that
the left-hand side fact holds for every value of the free variable, i.e. interpret
it as being universally quantified:

∀X. trustedOn(A,X) :− trusted(B).delegates(B,A)

Note that one may read this rule in two slightly different (but equivalent)
ways, depending on the scope of the quantification: namely either as an
infinite set of rules or as one rule yielding an infinite set of facts. The former
representation gives a straightforward way to describe the semantics, while
the latter one is the key for a simple implementation.

More in detail, the semantics of this extension is defined by a translation
of universally quantified Horn clauses into infinite sets of quantifier-free Horn
clauses. Consider the Horn clause

∀X1, . . . , Xn. L :− R

where vars(L) ⊆ vars(R) ∪ {X1, . . . , Xn}.2 We also consider that each Xi

has a unique type τi. The type system defines in a straightforward way a set
of all terms that have a particular type. Let us denote this set as Lτ for type
τ . Then, the meaning of the above rule is the following set of quantifier-free
Horn clauses:

{L[X1 7→ t1, . . . , Xn 7→ tn] :− R | t1 ∈ Lτ1 ∧ . . . ∧ tn ∈ Lτn ∧
n⋃
i=1

vars(ti) = ∅}

2The tools should give a warning if {X1, . . . , Xn} ∩ vars(R) 6= ∅ as in this case the
modeler potentially has made a mistake.

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 11/92

We then interpret the specification as defined in deliverable D2.1 with the
resulting quantifier-free Horn clauses.

2.3 Micro and Macro Steps
For the translation from ASLan v.2 to v.1.1, we consider a concept of micro-
steps and macro-steps, where the micro-steps represent the intermediate
states of an honest agent in a longer computation that we like to abstract
from, as explained in § 4.7.

To support this concept in ASLan v.1.1, we introduce a new fact state!
that is similar to the normal state fact but will be used for local states of
honest agents within a compressed (i.e. micro-stepping) section. We require
transition rules to have at most one state! fact on either side, and that the
initial state does have a state! fact.

The micro-step transition relation is now the “standard” transition rela-
tion → of ASLan as defined in D2.1. We define the new macro-step transi-
tion relation →→ based on the micro steps as follows: S1 →→ Sn iff there exist
S2, . . . , Sn−1 such that

• S1 → S2 → . . .→ Sn−1 → Sn,

• Si contains exactly one state! fact for 1 < i < n,

• the state! fact is not the same in two consecutive Si (so there is progress
in the process represented by the state!), and

• S1 and Sn do not contain a state! fact.

All LTL-goals are now interpreted with respect to the macro-step transi-
tion relation, i.e. the formulae are “blind” for the micro steps.

Note that our definition does not allow for “partial” macro-steps: sup-
pose that by → we can get into a state with a state! fact where no tran-
sition rule allows further progress of this intermediate state (i.e. a process
is “stuck” within micro-steps), then there simply is no corresponding macro
step according to our definition.

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 12/92

3 ASLan v.2 gentle introduction and syntax
We have defined the syntax of ASLan v.2 to achieve the following design
goals:

• The language should be expressive enough to model a wide range of
service-oriented architectures while at the same time allow for succinct
specifications.

• The language should allow for the (architecture-level) specification of
services at a high level of abstraction in order to reduce model com-
plexity as much as possible.

• The language should be close to specification languages for security
protocols and web services, but also to procedural and object-oriented
programming languages, so that it can be employed by users who are
not experts of formal protocol/service specification languages.

3.1 Entities
The top level constructs are entities, which are similar to classes in Java
or roles in HLPSL3. Entities are a collection of declarations and behavior
descriptions, which are usually known as roles in the context of security and
communication protocols.

Entities may have (typed) parameters and contain sub-entities with nested
scoping, such that variables and other items declared in outer entities are
inherited to the current one, where inner declarations hide any outer decla-
rations with the same name. Redeclaring elements of the same kind (e.g. two
function declarations or two sub-entity declarations with the same name) at
the same level in the same entity is not allowed.

Entities may be instantiated to processes (or threads). If an entity con-
tains a parameter named Actor, it must be of type agent. When a role
is instantiated (executed), the agent given as actual value of the parameter
Actor defines the agent that executes the role, which is important for rea-
soning about the knowledge of an agent and the security properties needed
or provided by the role.

An entity may import other entities contained in separate files (with the
filename being the entity name with the extension .aslan appended to it),
which typically contain collections of declarations known as modules.

3See [6] for a detailed description of the high-level protocol specification language
HLPSL of the AVISPA Tool for security protocol analysis.

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 13/92

An entity may be declared to be “compressed”, which means that the
execution of the statements in its body is essentially atomic. By default,
compressed execution is broken up (such that other entities and the intruder
may interfere) just before the reception of messages. Optionally, one may
specify an alternative set of “breaking events”.

3.2 Declarations
Within an entity, declarations of types, variables, constants, functions, ma-
cros, Horn clauses and equalities may be freely mixed. Note, however, that
constants, functions and equalities do always have global scope, i.e. like
declaring them in the root entity. All other declarations are effective in
the scope of the entity including sub-entities.

Types may have subtypes, e.g. agent < msg, and parameters. The only
types that have parameters are tuples (e.g. agent * msg) and sets (e.g.
msg set).

A communication-specific feature are compound types, which are a short-
hand for specifying structural constraints on (mostly message) terms. For
example, a variable declaration

X: crypt(public_key, agent.msg)

is expanded to a set of declarations

X1: public_key; X2: agent; X3: msg;

and every occurrence of the variable X in a term is replaced by

crypt(X1, X2.X3).

The names of constants and functions must be unique, i.e. not overloaded.
Like in C, macros are used to shorten and simplify lengthy recurring

terms. The function (or constant) name on the left-hand side must not be
declared in the symbols section or inherited from any enclosed entity.

Horn clauses define Prolog-style rules for “spontaneously” producing facts
whenever the conditions on the right-hand side are fulfilled. Both the LHS
and RHS may refer to local or inherited variables of the entity the clause
is defined in, making it applicable only when the entity instances “owning”
these variables are present. All other variables in the Horn clause (i.e. free
in the scope of the owner entity) are treated as universally quantified. Free
variables only appearing in the LHS must be explicitly universally quantified
using the keyword forall. Any other free variables must be listed as formal

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 14/92

parameters right after the name of the Horn clause, which is useful for doc-
umenting derivations that involve the Horn clause, as demonstrated at the
end of § 5.1. For instance, assume Z is a variable defined in an entity. Then
the following Horn clause may be declared in the entity:

hc_name(X): forall Y. f(X,Y) :- g(X) & g(Z)

Equalities are used to describe algebraic properties like the associativity of
concatenation. They are only allowed at the root level, i.e. in the outermost
entity, and thus are global. All variables occurring in them are implicitly
universally quantified.

3.3 Terms
Terms may include variables, constants, function applications (but not func-
tions themselves), and specific type constructors for tuples and set literals.
We denote the concatenation of messages M1 and M2 as M1.M2.

To enhance readability, any function application of the form f(X,Y,Z,...)
may alternatively be written in an object-oriented style as X->f(Y,Z,...).

The precedence of operators in guards and formulas is, in descending
order: ’(’ ... ’)’, ’->’, ’!’, ’=’, ’&’, ’|’, ’=>’.

3.4 Channels
For (potentially pseudonymous) secure channels, we briefly recall here the
notation we introduced in Deliverable D3.3 (Attacker models) [4] and which
is now integrated into ASLan. We use an intuitive notation from [12], where
a secure end-point of a channel is marked by a bullet with the following
informal meaning:

• A→•B : M represents a confidential channel.

• A •→B : M represents an authentic channel.

• A •→•B : M represents a secure channel, i.e. a channel that is both
authentic and confidential.

These channel kinds are defined formally in D3.3 [4], where we also consider
other kinds; see also [1,14]. Here, we introduce a similar notation to represent
another kind of channel:

• A⇒ B : M represents a resilient channel.

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 15/92

This notation can be combined with the previous ones. For instance,
A •⇒•B : M represents a channel that is both secure and resilient. As stated
in [2]: “A communication channel is resilient if it is normally operational
but an attacker can succeed in delaying messages by an arbitrary, but finite
amount of time. In other words, a message inserted into a resilient channel
will eventually be delivered.” With reference to the formalism presented in
§ 4.2 of D3.3, as specified in [1], this amounts to requiring that every message
sent over the channel will be eventually delivered to the intended recipient.
Thus, the condition that a channel ch is resilient can be formalized by the
following LTL formula:

resilient(ch) := G ∀(sent(a′, a, b,m, ch)⇒ F rcvd(b, a,m, ch))

While [12] uses the bullet notation to reason about the existence of chan-
nels, we use it to specify message transmission in services in two ways. First,
we may use channel properties as assumptions, i.e. when a service relies on
channels with particular properties for the transmission of some of its mes-
sages.

Second, the service may have the goal of establishing a particular kind of
channel. A channel goal has the form

Sender Channel Receiver: Payload

similar to the syntax of message transmission: Sender and Receiver can be
real names or the pseudonym notation, and Channel is a symbol for the kind
of channel used. For instance, the goal of TLS without client authentication
(adding a suitable payload message) is [Client] *->* Server: Payload.

As an example consider the following specification:

entity Session (A, B: agent) {
symbols Payload: payload;
entity Alice(Actor, B: agent) {

...
Actor.send(B,...Payload...)

}
entity Bob(Actor, A: agent) {

symbols Payload: payload;
...
Actor.receive(A,...?Payload...)

}
body {

new Alice(A,B);

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 16/92

new Bob (B,A);
}
goals

authentic_transmission: A *-> B: Payload;
}

A channel goal is part of the goals section of an entity (in the example:
Session) and must fulfill the following syntactic restrictions:

• There are (at least) two sub-entities, namely one that represents the
sender role and one that represents the receiver role. In the above
example, the sender is Alice and the receiver is Bob.

• For each of these sub-entities, exactly one instance is created with the
real names of both the sender and receiver, as given in the goal, occur-
ring as actual parameters of the instance, such that the sender’s name
is the actor of the sender entity and the receiver’s name is the actor of
the receiver entity. For instance, in the above example where the goal
is A •→ B: Payload, one sender entity instance is created where its
actor is A and the second parameter is B, and one receiver instance is
created where its actor is B and the second argument is A.

• The entity has a Payload variable of the special type payload which is
a placeholder for an actual message that shall be transmitted over the
channel. This variable is not initialized by the sender entity and just
received (and never modified) by the receiver entity.

In general, i.e. for both channels as assumptions and channels as goals, we
also allow agents to be alternatively identified by pseudonyms rather than
by their real names. We denote this as [a]_p where a is the real name
and p is the pseudonym. By default, every agent that acts pseudonymously
will create a fresh pseudonym upon instantiation; we write simply [a] if a
acts under this default pseudonym. Note that from the point of view of a
particular agent, the real name of the peer is not visible when communicating
over a pseudonymous channel, i.e. we cannot use the [a] notation for other
agents than the agent playing the current rule (denoted by Agent), but will
instead use only their pseudonyms (in place of their real agent names).

Table 1 shows the notations (and writing styles) that ASLan v.2 supports:
facts in OO-style notation as well as the annotated channel notation. Here,
we write * for the bullet annotations of [4], and ActP stands for Actor or
any pseudonym of it, i.e. [Actor] or [Actor]_P for any P.

For sends and receives, if the first actual parameter is Actor, like in
send(Actor,B,M) or Actor->receive(A,M), it may be omitted such that
only send(B,M) or receive(A,M), respectively, is written.

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 17/92

Table 1: Notations supported by ASLan v.2

OO notation Annotated channels notation
ActP->send(B,M) ActP -> B: M
ActP->receive(A,M) A -> ActP: M
ActP->send(B,M) over authCh ActP *-> B: M
ActP->receive(A,M) over authCh A *-> ActP: M
ActP->send(B,M) over confCh ActP ->* B: M
ActP->receive(A,M) over confCh A ->* ActP: M
ActP->send(B,M) over secCh ActP *->* B: M
ActP->receive(A,M) over secCh A *->* ActP: M
ActP->send(B,M) over resCh ActP => B: M
ActP->receive(A,M) over resCh A => ActP: M
ActP->send(B,M) over res_authCh ActP *=> B: M
ActP->receive(A,M) over res_authCh A *=> ActP: M
ActP->send(B,M) over res_confCh ActP =>* B: M
ActP->receive(A,M) over res_confCh A =>* ActP: M
ActP->send(B,M) over res_secCh ActP *=>* B: M
ActP->receive(A,M) over res_secCh A *=>* ActP: M

3.5 Statements
Statements may be the usual assignments, loops and branches, but also as-
sertions that induce goals to be checked at the current position in the control
flow, the generation of fresh values and entities, the transmission of messages,
the generation or retraction of facts, a non-deterministic selection among
whichever guards are fulfilled (which blocks as long as no guard is fulfilled),
and compressed sections that are executed atomically.

Entity generation may instantiate only direct sub-entities, such that static
and dynamic scoping coincide. Symbolic sessions are a convenient shorthand
to generate an unspecified number of entity instances each of which defines
a service session; the agents playing the roles indicated by the given list of
variables are arbitrarily selected from the domain of agents. An optional
guard, which may refer to the variables listed, may constrain the selection.

3.6 Names
In the syntax of ASLan v.2 that we will define shortly, we will adopt the
following conventions. Entities and variables have names starting with an
upper-case letter, while types, constants and function names start with lower-

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 18/92

case letters. The remaining characters in a name may be alphanumeric or
underscore “_” or quote “’”.

In guards, variable names may be preceded by “?” to denote that these
variables are assigned by pattern matching. In case there are multiple oc-
currences of the same variable V preceded by “?” in the same guard, the
guard will only be fulfilled if all the relevant patters agree on the value to
be assigned to V. All other occurrences of V without a “?” in front will use
the new value assigned. For situations where the pattern-matched value is
arbitrary and does not need to be stored, one may simply write “?” instead
of a variable.

Comments in ASLan, as well as in the grammar given below, start with
a “\%” symbol and extend until the end of the line.

3.7 Extended Backus-Naur Form
The context-free aspects of the ASLan v.2 grammar are defined using an
extended BNF, where (X #Y)+ stands for one or more occurrences of X,
separated by Y, e.g. (Term #",")+ can be expanded to Term, Term, Term.
Context-dependent restrictions are stated to the right of the respective BNF
rule, as informal text that is preceded by the “\%\%” symbols.

EntityDecl ::= ComprDecl? "entity" UpperName Params? "{" Imports?
Decls* EntityDecl* Body? GoalDecls? "}"

UpperLetter ::= ["A" .. "Z"]
LowerLetter ::= ["a" .. "z"]
Digit ::= ["0" .. "9"]
Alphanum ::= UpperLetter | LowerLetter | Digit | "_" | "’"
UpperName ::= UpperLetter Alphanum*
LowerName ::= LowerLetter Alphanum*

Var ::= UpperName
Vars ::= (Var #",")+
Params ::= "(" ((Vars ":" Type) #",")+ ")"

ComprDecl ::= "compressed" ( "{" ( LowerName #"," )+ "}" )?

Imports ::= "import" (UpperName #",")+

Decls ::= TypeDecls | SymbolDecls | MacroDecls | ClauseDecls
| EqualityDecls

TypeDecls ::= "types" (TypeDecl ";")+
TypeDecl ::= LowerName ("<" LowerName )? % note the optional supertype
Type ::= LowerName % simple type name

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 19/92

| Type "set" % note the actual type parameter
| Type ("*" Type)+ % tuple
| (Type "->")? LowerName ("(" Types ")")? % general compound
| "(" Type ("," Type)+ ")" % tuple compound
| Type ("." Type)+ % concatenation
| "(" Type ")"

Types ::= (Type #",")+

SymbolDecls ::= "symbols" (SymbolDecl ";")+
SymbolDecl ::= Vars ":" Type

| (LowerName #",")+ ":" Type % constants, only in root
| LowerName "(" Types ")" ":" Type % function symbol

MacroDecls ::= "macros" (MacroDecl ";")+
MacroDecl ::= (Var "->")? LowerName ("(" Vars ")")? "=" Term

ClauseDecls ::= "clauses" (ClauseDecl ";")+
ClauseDecl ::= LowerName ("(" Vars ")")? ":" % name and parameters

("forall" Var+ ".")? Term ":-" (Term #"&")+

EqualityDecls ::= "equalities" (EqualityDecl ";")+ % only allowed in root
EqualityDecl ::= Term "=" Term

Term ::= LowerName
| Var
| "?"Var %% only allowed within guards
| "?" %% only allowed within guards
| FuncApp
| "[" Term ("]" | ("]_" Term)) % pseudonym
| Term ("." Term)+ % message concatenation
| "(" Term "," Terms ")" % tuple
| "{" Terms? "}" % set literal, only in variable assignment
| "(" Term ")"

Terms ::= (Term #",")+
FuncApp ::= (Term "->")? LowerName ("(" Terms ")")? % not transmission
Body ::= "body" Stmt

Guard ::= FuncApp
| (Term "->")? "receive" "(" Terms ")" ("over" Term)?

% where "Actor ->" is optional
| Term "*"? ("->" | "=>") "*"? Term ":" Term % annotated channels
| "!" Guard
| Term "=" Term
| Guard "&" Guard
| Guard "|" Guard
| Guard "=>" Guard
| "(" Guard ")"

GuardNoRcv ::= Guard %% any Guard but not containing receive

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 20/92

Stmt ::= Assign
| FreshGen
| EntityGen
| SymbEntityGen % symbolic session
| (Term "->")? ("send"|"receive") "(" Terms ")" ("over" Term)?

% where "Actor ->" is optional
%% sets cannot be used in ‘‘send’’ and ‘‘recv’’ facts

| Term "*"? ("->" | "=>") "*"? Term ":" Term % annotated channels
%% sets cannot be used in annotated channel facts

| IntroduceFact
| RetractFact
| Branch
| Loop
| Select
| Assert
| "{" (Stmt ";")* "}"
| "compressed" Stmt

Assign ::= Var ":=" Term
FreshGen ::= Var ":=" "fresh()"
EntityGen ::= "new" Entity
SymbEntityGen ::= "several" (Vars ".")? Entity ("where" GuardNoRcv)?
Entity ::= UpperName ("(" Terms ")")?
IntroduceFact ::= FuncApp
RetractFact ::= "retract" FuncApp
Branch ::= "if" "(" GuardNoRcv ")" Stmt ("else" Stmt)? "fi"
Loop ::= "while" "(" GuardNoRcv ")" Stmt
Select ::= "select" "{" ("on" Guard ":" Stmt)+ "}"
% Guard may include receive
Assert ::= "assert" LowerName ":" ("exists" Var+ ".")? GuardNoRcv

GoalDecls ::= "goals" (GoalDecl ";")+
GoalDecl ::= LowerName ":" Formula
Formula ::= FuncApp

| Term "*"? ("->" | "=>") "*"? Term ":" Term % annotated channels
| "!" Formula
| LTLOp1 "(" Formula ")"
| LTLOp2 "(" Formula "," Formula ")"
| Term "=" Term
| Formula "&" Formula
| Formula "|" Formula
| Formula "=>" Formula
| "forall" Var+ "." Formula
| "exists" Var+ "." Formula
| "(" Formula ")"

% neXt | Yesterday | Finally | Once | Globally | Historically
LTLOp1 ::= "X" | "Y" | "F" | "O" | "G" | "H"
% Until | Release | Since

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 21/92

LTLOp2 ::= "U" | "R" | "S"

3.8 Prelude
The syntax of both ASLan v.1 and v.2 gives the user great freedom in declar-
ing new symbols such as functions and facts (cf. the prelude in D2.1). Their
meaning may be specified using equations, transition rules, Horn clauses,
and/or LTL constraints. In fact, it is an important feature of the ASLan se-
mantics that we do not need built-in symbols with a pre-defined meaning but
can express the meaning of all symbols in ASLan itself. For instance, we use
in many examples the fact symbol iknows(msg): fact that represents that
the intruder knows a particular message. We may further use the symbols
crypt(msg,msg):msg and scrypt(msg,msg):msg for asymmetric and sym-
metric encryption, respectively. ASLan allows us to define the deductions of
the intruder in the style of Dolev-Yao by a set of Horn clauses, e.g.

iknows(M) :- iknows(crypt(K,M)).iknows(inv(K))
iknows(crypt(K,M)) :- iknows(K).iknows(M)

There are two reasons, however, to fix the meaning of some symbols
with a kind of “standard interpretation”. First, some symbols like in the
above examples have been consistently used over a long time with a fixed
meaning and serious misunderstandings may occur if somebody attaches a
different meaning to them. Second, validation tools may have specialized
techniques for some symbols, such as intruder deduction with a predefined
set of operators; in order to capture the subclass of models for which some
tools are specialized, it is necessary to have fixed symbols.

For both these reasons, we are defining a standard prelude file that con-
tains standard definitions such as the above ones and that is imported by
ASLan v.2 specifications. We do not discuss this in detail here, as the prelude
is not considered a built-in part of ASLan, i.e. the syntax and semantics is
completely independent of the precise definition of the prelude. The seman-
tics section will silently assume the declaration of several standard symbols
in the prelude, such as the type symbol agent.

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 22/92

4 ASLan v.2 semantics
In this section, we give a procedure for translating ASLan v.2 specifications
into ASLan v.1.1 specifications. This procedure therefore defines the seman-
tics of ASLan v.2 in terms of ASLan v.1.1, and will serve as a basis for the
implementation of the translation software.

We provide a high-level overview of the translation procedure, which con-
sists of a number of steps that each focus on different aspects of the mapping
from the feature-rich, process-based ASLan v.2 into the rewrite-based ASLan
v.1.1.

The first step of the translation takes care of file imports and macro
unfolding and the like. This phase is known as the preprocessing phase and
is described in § 4.1.

Next, we have the static part of the specification, that is, everything that
is not code, is translated. This translation step covers entities (§ 4.2), types
and symbols (§ 4.3), Horn clauses (§ 4.4), equalities (§ 4.5) and security goals
(§ 4.13).

Some preliminaries for the translation of code sections are described in
in § 4.6 (for control flow) and in § 4.7 (for compression).

Then, the code sections are translated in two sequential phases:

• translation of statements, guards and transmission events (described
respectively in § 4.8, § 4.9 and § 4.12), where the rewrite rules for the
ASLan v.1.1 specification are generated (although in a temporary form
allowing for ASLan v.2 terms), and

• translation of terms (§ 4.10), applied to the rules generated in the first
phase, converting ASLan v.2 terms into ASLan v.1.1 ones.

Finally, § 4.11 describes the translation of the encapsulating body section.

4.1 Preprocessing
As a first step, we consider a group of preliminary operations on the input
specification, which do not generate ASLan v.1.1 specifications but rather
modify the input specification to ease the translation procedure. These op-
erations are:

Import of external modules. In the import section a modeler can spec-
ify any number of external entities (called modules) to be included into
the current entity specification. Importing a module corresponds to
merging the sections of the module with the analogous sections of the

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 23/92

current entity specification. This step results in a single entity, with-
out any remaining import section. Note that imported modules may
contain imports themselves, treated recursively.

Global disambiguation of elements. Since entities allow for an arbitrary
nesting of sub-entities, local declarations of elements (e.g. symbols, sub-
entities, types, goals, . . . ) override any homonymous elements of the
same sort that were defined in ancestor entities. Because ASLan v.1.1
only supports a flat name space, each overridden element is renamed
uniquely (for instance, by prepending the name of the entity it is defined
in) and thus is known, for all further translation steps and at the ASLan
v.1.1 level, under the new disambiguated name.

Expansion of macros. The specification is parsed and any term matching
the LHS of a macro defined in the macros section is replaced by the
corresponding RHS. After this step, the macros section can be removed.

Expansion of shorthands. All function applications in object-oriented sty-
le notation, namely of the form t_1 -> func(t_2,..,t_n), are con-
verted to the form func(t_1,t_2,..,t_n)}. For the special cases
of send and receive operations where just two arguments are given,
i.e. the optional argument Actor has been omitted, Actor is inserted
in this step as an additional first argument. In a similar way, all bullet-
style transmission (i.e. annotated channel) facts are converted into the
appropriate predicates as specified in Table 1.

4.2 Translation of entities
For every entity (at any level of nesting) in the specification, we declare in the
translation a fresh state predicate, in the ASLan v.1.1 section signature.
The new predicate will be parameterized with respect to a step label, an
instance ID to uniquely identify every instance, parameters and variables of
the entity, and will yield a fact. Parameters are treated exactly like local
variables, except that they are initialized at entity instantiation. The state
predicate has multiple purposes:

• “record” each instance of the entity,

• express the control flow of the entity, by means of the step label,

• keep track of the local state of an instance (namely, the current value
of its variables),

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 24/92

and will be used later in the generation of rewrite rules for the translation.
While such facts store the values of parameters and other variables local

to the given instance of an entity, these may be accessed (read and written)
by children entities as well. In these cases, we will refer to the owner of a
variable as the parent/ancestor instance that declares this variable locally
and therefore has the variable stored in its state fact.

Example 1 Consider the following entity declaration for the Bid Manager
in the Public Bidding model

entity BidM(Actor, BP: agent) {

symbols
M: msg; % a variable

}

then the following state predicate is created

state_BidM: agent * agent * msg * IDType * SLType -> fact

in section signature in the translation.
The arguments of the predicate are two agent names (for parameters

Actor and BP), a message (for variable M), a unique instance ID (of type
IDType) created at instantiation, and finally a step label of type SLType
(which we leave unspecified as different encodings for different types might
be employed).

At instantiation of the entity,

new BidM(bm, bp)

where terms are passed to the entity in place of its parameters, a new fact

state_BidM(bm, bp, ui, iid, sl_0)

will be added to the state. From now on, this fact can be used to identify
this particular entity (via its instance ID iid), the value of its variables (M,
initially set to ui, for uninitialized) and parameters (Actor and BP, here
replaced by the terms bm and bp), and its execution progress (step label,
sl_0). 2

As the above example shows, this state fact stores all necessary infor-
mation regarding the execution state of a particular instance of an entity
in the system, namely its instance ID, its step label, and the value of all
its variables (including also parameters). Yet, nested entities inherit these

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 25/92

values from their ancestors, meaning that variables of an instance are visible
(unless overridden) to all its descendants. Thus, when an entity E refers to
a variable of its ancestor A, then it is A’s state fact, rather than E ’s, that
needs be used.

To this end, in the following we will speak of the owner of a variable,
indicating the instance whose state fact contains the value of that variable.
While identifying which entity a variable belongs to can be done in the trans-
lation phase, identifying the exact runtime instance depends on the execution
of the system and can be done only by binding each instance to its ancestors.

Assuming the restriction that entities can instantiate only direct sub-
entities, we implement this binding as:

• We utilize two binary predicates: child(A,D) stating that D is a child
entity instance ofA, and its reflexive-transitive closure descendant(A,D)
stating that D is A itself of a (direct or indirect) descendant of A.

• descendant(A,D) may be implemented via the two Horn clauses

∀A. descendant(A,A)

and

descendant(A,D) :− descendant(A,E) & descendant(E,D)

• At instantiation of an entity, let iid and pid be the IDs of the new in-
stance and its parent, respectively. We add to the state the (persistent)
fact child(pid,iid).

• When we add the state fact of the owner of a variable to the state,
we actually add both its state fact (with ID OID) and the predicate
descendant(OID,iid) (where iid is the ID of the entity instance being
executed at this step), thus enforcing the binding. See example 3 for
more details.

4.3 Translation of Types and Symbols
ASLan v.2 has the built-in types fact, msg, and agent which is a subtype
of msg, and the parameterized types A * B and A set.

There are also a set of built-in constants and functions:

• i of type agent denotes the intruder,

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 26/92

• defaultPseudonym of type (agent,iid): agent is the default pseu-
donym of a given agent (and a given instance ID), i.e. when using
pseudonymous channels without specifying a particular pseudonym.
The use of the instance ID is simply to use a fresh pseudonym for each
instance of an entity that one plays in,

• contains of type (A set,A): fact denotes set membership, and

• iknows of type (msg): fact.

After having (in the preprocessing phase) renamed all homonymous el-
ements so to have globally unique names, mapping of types and symbols
declaration can be done in a straightforward way, mainly requiring only syn-
tactical adjustments.

In particular, declarations of new types must be reflected in the ASLan
v.1.1 file in section typeSymbols. All types, including compound types and
parameterized types, are passed unchanged to the ASLan v.1.1 level. Sym-
bols must be partitioned into variables, constants and functions, and then
be transcribed to section types (the first two) and to section signature
(the latter) in the ASLan v.1.1 file. Parameter declarations for the entity are
handled like variable declarations. Note also that for each declaration of a
constant c of type agent we need add to the initial state the fact agent(c),
denoting that c belongs to the domain of agents (needed for symbolic entity
instantiation, see § 4.8.5).

4.4 Translation of Horn Clauses
Although each Horn clause is declared inside an entity, it should be applicable
globally if it does not refer to local variables (including parameters) of the
entity or any enclosing ones. Otherwise, the Horn clause will be applicable
more locally, being inherently bound to the variables it refers to, which might
belong to the entity as well as to its ancestors. Translating the Horn clauses
is therefore adjusted so to preserve this binding.

For each of the entities whose variables are referred to by the given Horn
clause, we add to the conditions of the clause their state fact. This means
that if in an entity E we have a Horn clause

h := A :- A_1,..,A_n

such that if V is the intersection between the variables in the scope of E and
the variables in A,A_1,..,A_n, and {o_1,..,o_m} is the set of owners of the
variables in V, we add to the translation the clause

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 27/92

h := A :- A_1,..,A_n,state_{o_1}(..),..,state_{o_m}(..)

so that each variable in the Horn clause that exists in the scope of E is
bound to the value the variable currently has in its owning entity instance.

Example 2 Take the entity declaration for the BidM above, extended with
a Horn clause asserting that the bid manager trusts the bidding portal on
any message, as follows

entity BidM(Actor, BP: agent) {

clauses bmTrustBpOnAnyMsg(X):
trusts(Actor, BP, X) :- saidTo(BP, Actor, X)

}

The only free variable in the clause is X, while Actor and BP are bound to
the values of the parameters.

If this clause were transcribed to an ASLan v.1.1 specification as is,

trusts(Actor, BP, X) :- saidTo(BP, Actor, X)

then Actor and BP would be considered as universally quantified and the
clause would change its meaning entirely (everybody would trust anybody
who says something on anything). Adding instead the state fact to the
conditions of the clause

trusts(Actor, BP, X) :- saidTo(BP, Actor, X).
state_BidM(Actor, BP, M, IID, SL)

Actor and BP are bound by the state fact state_BidM(Actor, BP, M, IID, SL)
to belong to an instance of the entity. 2

4.5 Translation of Equalities
The syntax for equalities in ASLan v.2 closely resembles the syntax for the
equalities in ASLan v.1.1, and their semantics are identical, therefore their
translation will consist in minor syntactic adjustments (applying a procedure
for conversion of terms that we will present in § 4.10) and transcription in
the section equations of the file.

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 28/92

4.6 Representing the Control Flow
As anticipated in § 4.2 we represent the control flow of the entity via a step
label stored in its state fact. We introduce here an abstract encoding for step
labels which we will refer to in the next phases of the translation procedure.
Note that step labels are symbolic and do not need to be numbers.

We assume a predefined step label sl_0, already declared in section types
of the translation, standing for the default initial step label and the following
functions, which are total, injective and have disjoint range:

• succ(sl), returning the successor for sl, and

• branch(sl, n), returning the nth branch for sl.

4.7 Step Compression
The translation we define in this document produces for each entity transition
rules expressing progress at statement-level granularity. For instance, the
three lines

Actor->receive(?A, A);
N := fresh();
Actor->send(A, N);

would get translated into three individual transitions:

state_responder(Actor, ui, ui, SL,IID).iknows(A)
=>

state_responder(Actor, A, ui, succ(SL),IID)

state_responder(Actor, A, ui, succ(SL),IID)
=[exists N]=>

state_responder(Actor, A, N, succ(succ(SL)),IID)

state_responder(Actor, A, N, succ(succ(SL)),IID)
=>

state_responder(Actor, A, N, succ(succ(succ(SL))),IID).iknows(N)

After each such progress step, other processes or the intruder may make
progress. This gives rise to the following issues:

• Race conditions may appear in case of shared knowledge (e.g. all in-
stances of a service running on the same server, accessing its database).
If we do not want to explicitly specify mutual exclusion algorithms

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 29/92

within the model to prevent race conditions, we thus need to be able
to specify that certain sequences of transitions are atomic. This is of
course an abstraction step that the specifier may choose to use, at the
risk of losing certain behaviors of the model.

• On the practical side, even for relatively small processes, this fine-
grained model produces a large set of interleavings even for a few pro-
cesses. Specifications can thus easily get infeasible for the validation
tools. Note that in many cases these interleavings are irrelevant be-
cause they concern internal computations of a service and the relative
ordering with other internal computations is not really relevant. On
the other hand, it is almost impossible to determine which interleavings
could give rise to new attacks on the tool side.

For this reason, we have introduced the construct compressed {s} for
statements s. The idea is to define that all steps of s are performed as a single
transition. This is similar to atomic blocks in other languages for distributed
systems: nothing else can happen before the atomic or compressed section
is finished. In contrast to atomic definitions, however, we do not regard this
as individual transitions (with a restriction on the allowed traces). Instead,
we compress the respective actions into one transition, e.g. in the above
example:

state_responder(Actor, ui, ui, SL,IID).iknows(A)
=[exists N]=>

state_responder(Actor, A, N, succ(SL),IID).iknows(N)

We expect that merely for efficiency, such compressions are necessary for
many sections of statements, which can lead to cumbersome, hard-to-read
specifications. Therefore, we also allow for a different, more global way of
specifying compression: we allow the specifier to write compressed {f} entity
for an entire entity specification with an optional argument {f} which is a set
of fact symbols. If the optional set is not given, the default is the singleton
set {receive}. The meaning is that all transitions within the entity (but
not sub-entities) are compressed up to, but not including, any introduction
of a fact whose fact symbol is included in the set {f}. This corresponds
to declaring that everything following such an event e from {f} up to the
next one is considered as an internal computation and shall be an immediate
consequence of e. This in particular allows for compressions up to an event
in a loop without unrolling this loop for the specification of the compression.
We believe that this is a useful compromise between the goal of a declarative,
intuitive, easy-to-use specification language of services and the needs of the
validation tools that have to work on these specifications.

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 30/92

The compression of several rules would in many cases considerably compli-
cate the exposition of this translation process and is in some cases impossible
(e.g. when an entire loop is compressed). Therefore, we describe the trans-
lation by using the fine-grained transitions but with annotations specifying
what should be compressed as follows. These annotations are the special
state! facts that we have introduced in our update of ASLan v.1 (see § 2.3):
like standard state facts, they represent the local state of honest agents
where the exclamation mark expresses an intermediate state of a compressed
transition. Recall that the semantics is to consider macro-transitions that
compress all the intermediate micro-transitions where honest agents are in a
local state denoted by a state! fact.

In the translation from ASLan v.2 to v.1.1, the compression is now
straightforwardly integrated into the normal translation process. Consider a
transition rule that is produced by the translation and that has the following
form:

state_X(MSGs,IID).facts | conditions
=>
state_X(MSGs’,IID).facts’

where IID is the identifier of the current entity instance. To add the com-
pression the translator would replace the left-hand side or right-hand side
state fact, or both, with a state! fact, depending on the location of this
transition with respect to the compression:

• If the transition enters a compressed section, then only the right-hand
side is changed:

state_X(MSGs,IID).facts | conditions
=>
state!_X(MSGs’,IID).facts’

• If the transition is within the compressed section, i.e. neither entering
nor exiting it, both sides are changed:

state!_X(MSGs,IID).facts | conditions
=>
state!_X(MSGs’,IID).facts’

• If the transition is exiting the compression section, only the left-hand
side is changed:

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 31/92

state!_X(MSGs,IID).facts | conditions
=>
state_X(MSGs’,IID).facts’

Compressing the three step example above gives thus the following rules:

state_responder(Actor, ui, ui, SL,IID).iknows(A)
=>

state!_responder(Actor, A, ui, succ(SL),IID)

state!_responder(Actor, A, ui, succ(SL),IID)
=[exists N]=>

state!_responder(Actor, A, N, succ(succ(SL)),IID)

state!_responder(Actor, A, N, succ(succ(SL)),IID)
=>

state_responder(Actor, A, N, succ(succ(succ(SL))),IID).iknows(N)

According to the ASLan v.1.1 semantics, a macro transition would not
stop at the intermediate states that contain a state! fact, but continues,
with any applicable rule, until reaching a state without a state! fact (and
cannot apply any rule that does not change the state! fact, which guarantees
that progress is made only in one process instance).

Note that in this simple case of a sequence of atomic actions, the following
compressed rule would be equivalent:

state_responder(Actor, ui, ui, SL,IID).iknows(A)
=[exists N]=>

state_responder(Actor, A, N, succ(succ(succ(SL))),IID).iknows(N)

Whenever feasible, the translator will produce such compressed rules (as it
makes verification easier for the back-end tools). As mentioned above, this
is sometimes a complex procedure, e.g. if the sequence of actions contains
branches, and there are cases when this is not possible, e.g. the compression
of an entire loop. We have chosen not to complicate our semantics exposition
with a complete description of the compression procedure but regard it as
a potential optimization step (that must be semantics-preserving, as in the
above example) of the translator from ASLan v.2 to v.1.1.

4.8 Translation of Statements
We define here, in pseudo-code, a procedure ParseCode that recursively
parses a list of statements and generates equivalent rewrite rules as out-

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 32/92

put. Its arguments are the list of statements Stmts to parse, the current step
label sl and a return step label (for returning from a branch).

For ease of understanding, the procedure will call different sub-procedures
according to the kind of the statement examined, each of which is treated in
a subparagraph.

ParseCode(Stmts, sl, return_sl)

if (Stmts = stmt.rest) { % Stmts not empty
% stmt: first statement,

% rest: remaining statements

case stmt {
- assign : Assign(stmt, rest, sl, return_sl)
- freshGen : FreshGen(stmt, rest, sl, return_sl)
- entityGen : EntityGen(stmt, rest, sl, return_sl)
- symbEntGen : SymbEntGen(stmt, rest, sl, return_sl)
- transmission: Transmission(stmt, rest, sl, return_sl)
- introduceFact : IntroduceFact(stmt, rest, sl, return_sl)
- retract : RetractFact(stmt, rest, sl, return_sl)
- branch : Branch(stmt, rest, sl, return_sl)
- loop : Loop(stmt, rest, sl, return_sl)
- select : Select(stmt, rest, sl, return_sl)
- assert : Assert(stmt, rest, sl, return_sl)
- grouping : Grouping(stmt, rest, sl, return_sl)
- compressed : Compressed(stmt, rest, sl, return_sl)

}
} else { % No statement left to parse

if (return_sl != null) {
LHS = state fact for this entity, with step label sl
RHS = state fact for this entity, with step label return_sl

add
LHS "=>" RHS

to "section rules" in the translation
}

}

The procedure analyzes the first statement in the list given, calling the appro-
priate sub-procedure according to the statement’s type. When no statements

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 33/92

are left to parse, either the execution of the main thread is finished or that
of a branch is. In the latter case, a return step label is provided, and a new
idle rule will be added to the translation to redirect the control flow to the
former thread’s execution.

In the following sub-paragraphs, we will explain every sub-procedure indi-
vidually, and use the first instruction stmt = form to describe the syntactic
form of statement stmt.

4.8.1 Grouping

Grouping(stmt, rest, sl, return_sl) {

stmt = "{" InnerStmts "}"

ParseCode(InnerStmts.rest, sl, return_sl)
}

In the case of a series of statements grouped by brackets, the internal state-
ments are prepended to the remaining statements, and the parsing is resumed
on this new list of instructions.

4.8.2 Variable assignment

Assign(stmt, rest, sl, return_sl) {

stmt = Var ":=" Term

LHS = state fact for this entity, with step label sl.
state fact for the owner of Var

RHS = state fact for this entity, with step label succ(sl).
state fact for the owner of Var with Var set to Term

add
LHS "=>" RHS

to "section rules" in the translation

ParseCode(rest, succ(sl), return_sl)
}

In case of assignment to a variable Var, we create a rewrite rule as given
above, with one exception. Since Var may belong to an ancestor of the
entity, we need to change its state fact rather than the current entity’s (for

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 34/92

which we will update the step label nonetheless). Yet in case Var belongs
to the current entity, the two state facts in the LHS are collapsed into one,
and there is only one state fact on the RHS that combines the change to the
step label with the assignment to the variable. A similar strategy is always
followed in order to avoid unintended duplication of state facts on the right-
hand side of a rule, e.g. when multiple variables (and possibly step numbers)
on the right-hand side of a rule need to be updated.

Example 3 Let us extend further the BidM declaration above, with a vari-
able assignment, as follows

M := crypt(publicKey(BP),m);

The variable assignment can be expressed via a rule as the following one,
which replaces M with the term assigned to it:

state_BidM(Actor,BP,M,IID,sl)
=>

state_BidM(Actor,BP,crypt(publicKey(BP),m),IID,succ(sl))

Note that this is the case for assignment to a variable M local to the entity
BidM, whereas if it was another variable E belonging to an ancestor of BidM,
e.g. Env, the resulting rewrite rule would be

state_BidM(Actor,BP,M,IID,sl).state_Env(..,E,..)
=>

state_BidM(Actor,BP,M,IID,succ(sl)).
state_Env(..,crypt(publicKey(BP),m),..)

2

4.8.3 Generation of fresh values

FreshGen(stmt, rest, sl, return_sl) {

stmt = Var ":=" "fresh()"

N is fresh variable name
declare N of same type as Var in "section types" in
the translation

LHS = state fact for this entity, with step label sl.
state fact for owner of Var

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 35/92

RHS = state fact for this entity, with step label succ(sl).
state fact for owner of Var with Var set to Term

add
LHS =[exists N ]=> RHS

to "section rules" in the translation

ParseCode(rest, succ(sl), return_sl)
}

Generation of a fresh value is straightforward: transparently to the mod-
eler, a new variable N is created, and a rewrite rule is added that substitutes
Var in its owner’s state fact with N, instantiated by the exists of the rewrite
rule, and advances the step label.

Like for regular assignments, since Var may belong to an ancestor of the
entity, we need to change its state fact rather than the current entity’s (for
which we will update the step label nonetheless). Yet, in case Var belongs
to the current entity, the two state facts in the LHS are collapsed into one,
and there is only one state fact on the RHS that combines the changes to
the step label with the assignment to the variable.

Example 4 Let’s extend the above Bid Manager specification by adding in
its body the following instruction to instantiate variable M of type msg with
a fresh value of agreeing type

M := fresh();

then we create a new variable M_1 in the translation, and express the fresh
generation via the rule

state_BidM(Actor,BP,M,IID,sl)
=[exists M_1]=>

state_BidM(Actor,BP,M_1,IID,succ(sl))

As for the variable assignment case, if the generated value is assigned to a
variable belonging to an ancestor, the state fact of the latter must be changed
instead. 2

4.8.4 Entity instantiation

EntityGen(stmt, rest, sl, return_sl) {

stmt = "new" entity "(" t_1 "," .. "," t_n ")"

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 36/92

IID = fresh variable

declare IID of type IDType in "section types" in
the translation

LHS = state fact for the current entity, with step label sl.
state facts for the owners of variables appearing in

t_1,..,t_n
RHS = state fact for the current entity, with step label

succ(sl).
state facts for the owners of variables appearing in

t_1,..,t_n.
state fact for new entity instance, such that
- its step label is sl_0
- its instance ID is IID
- all parameters p_1,..,p_n set to t_1,..,t_n
- all variables v_1,..,v_m set to "ui"

add
LHS =[exists IID ]=> RHS

to "section rules" in the translation

ParseCode(rest, succ(sl), return_sl)
}

Conceptually, instantiating an entity corresponds to creating a new state
fact for the instance, running from this point on in parallel to all other entity
instances in the system.

To this end, we create a rule that adds to the current state the state fact
for the new instance, with a fresh instance ID to make it distinct from any
other already in the system and step label sl_0 from which execution of its
body can start. Its parameters p_1,..,p_n are assigned the terms passed,
namely t_1,..,t_n, while its internal variables v_1,..,v_m are assigned the
value ui standing for uninitialized.

Example 5 Imagine that during the parsing of the entity Env, at step label
sle, the following instantiation for BidM is encountered

new BidM(bm,bp);

The rule generated will be

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 37/92

state_Env(sle,..)
=[exists IID]=>

state_Env(succ(sle),..).state_BidM(bm,bp,ui,IID,sl_0)

that will create the fact for the BidM instance, with step label sl_0. 2

4.8.5 Symbolic entity instantiation

SymbEntityGen(stmt, rest, sl, return_sl) {

stmt = "several" A_1 .. A_m "."
entity "(" t_1 "," .. "," t_n ")" "where" Guard

create, if not present, the following rules
=[exists A]=> agent(A)
=[exists A]=> agent(A).honest(A)

to "section rules" in the translation

g_1..g_n = positiveGuards(Guard)

apply adaptGuard to g_1..g_k

IID = fresh variable

declare IID of type IDType in "section types" in
the translation

for (i from 1 to k) {

LHS = state fact for the current entity, with step label sl.
state facts for the owners of variables appearing in

t_1,..,t_n.
state facts for the owners of variables appearing in g_i

RHS = state fact for the current entity, with step label sl.
state facts for the owners of variables appearing in

t_1,..,t_n.
state facts for the owners of variables appearing in g_i
state fact for new entity instance, such that
- its step label is sl_0
- its instance ID is IID
- all parameters p_1,..,p_n set to t_1,..,t_n

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 38/92

- all variables v_1,..,v_m set to "ui"

for (j from 1 to m) {
LHS = LHS.agent(V_j)
RHS = RHS.agent(V_j)

}

add
LHS.g_i =[exists IID ]=> RHS.renewPositiveFactsIn(g_i)

to "section rules" in the translation
}

LHS1 = state fact for this entity, with step label sl
RHS1 = state fact for this entity, with step label succ(sl)

add
LHS1 "=>" RHS1

to "section rules" in the translation

ParseCode(rest, succ(sl), return_sl)
}

A symbolic entity instantiation consists in the instantiation of an un-
bounded but finite number of instances of an entity. Its purpose is modelling
a whole class of instances, i.e. for all possible substitutions of non-ground
agents A_1,..,A_m with ground agents taken from the domain.

This is done by first “generating” the domain of the agents, whose mem-
bership is represented by the predicate agent(). The domain includes the
user-defined agent constants (for which the corresponding agent predicates
are added to the initial state in § 4.3), and is augmented to an unbounded
set of agents by the rules

=[exists A]=> agent(A)
=[exists A]=> agent(A).honest(A)

that generate fresh constants for which the predicate agent holds.4
Then, the actual symbolic instantiation is translated in two rules, one

looping on the current point of execution and generating a new instance of
the entity at every step, the other just leaving this loop. Each instantiation
will contain the non-ground agents A_1,..,A_m, but these will be bound to

4The predicate honest is needed later on for verification purposes.

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 39/92

concrete agents by the predicates agent(A_1)..agent(A_m) in the LHS of
the rule (and also renewed in the RHS). In addition to this, the rule will
also enforce that the chosen agents for A_1,..,A_m satisfy Guard, whose
treatment we will introduce in detail in § 4.8.9.

4.8.6 Transmission statements

Transmission(stmt, rest, sl, return_sl) {

if stmt = "receive" params
then

Select("select { on " stmt ": {}}", rest, sl, return_sl)
else % stmt = "send" params

IntroduceFact(stmt, rest, sl, return_sl)
fi

}

An independent receive statement R, i.e. a receive operation that has not
been specified as a guard in an on part of a select statement, is translated
as if it appeared in select { on R: {}} (see § 4.8.11 for details).

A send statement is translated at first like a fact introduction (see § 4.8.7
for details).

Note that transmission events will be further translated as defined in
§ 4.12.

4.8.7 Fact introduction

IntroduceFact(stmt, rest, sl, return_sl) {

stmt = funcapp

LHS = state fact for this entity, with step label sl
RHS = state fact for this entity, with step label succ(sl).

funcapp

add
LHS "=>" RHS

to "section rules" in the translation

ParseCode(rest, succ(sl), return_sl)
}

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 40/92

An element addition statement of the form add(Set,X) is handled as an
introduction of contains(Set,X).

An element removal statement of the form remove(Set,X) is handled as
a retraction contains(Set,X).

4.8.8 Fact retraction

RetractFact(stmt, rest, sl, return_sl) {

stmt = "retract" funcapp

LHS = state fact for this entity, with step label sl.
funcapp

RHS = state fact for this entity, with step label succ(sl)

add
LHS "=>" RHS

to "section rules" in the translation

ParseCode(rest, succ(sl), return_sl)
}

Note that if a fact to be retracted is not present, execution is blocked (until
the fact is introduced).

4.8.9 Branch

Branch(stmt, rest, sl, return_sl) {

stmt = "if" Guard "then" LeftStmt ("else" RightStmt)? "fi"

p_1..p_n = positiveGuards(Guard)
n_1..n_m = negativeGuards(Guard)

apply adaptGuard to p_1..p_n and n_1,..,n_m

% positive branches, i.e. Guard satisfied
for (i from 1 to n) {

LHS = state fact for this entity, with step label sl.
state facts for the owners of variables appearing in

p_i
RHS = state fact for this entity, with step label

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 41/92

branch(sl, 0).
state facts for the owners of variables appearing in

p_i
add

LHS.p_i "=>" RHS.renewPositiveFactsIn(p_i)
to "section rules" in the translation

}

% negative branches, i.e. Guard not satisfied
for (i from 1 to m) {

LHS = state fact for this entity, with step label sl.
state facts for the owners of variables appearing in

n_i
RHS = state fact for this entity, with step label

branch(sl, 1).
state facts for the owners of variables appearing in

n_i
add

LHS.n_i "=>" RHS.renewPositiveFactsIn(n_i)
to "section rules" in the translation

}

ParseCode(LeftStmt, branch(sl, 0), succ(sl))
ParseCode(RightStmt, branch(sl, 1), succ(sl))
ParseCode(rest, succ(sl), return_sl)

}

Conceptually, an if statement corresponds to two rewrite rules branching
the execution of the model in one direction if the Guard is satisfied, or another
if it is not. Then, for each of these branches, the corresponding statements
are parsed, and the control in both cases goes back to the original thread of
execution.

This holds, though, only for (possibly negated) literals, while in the gen-
eral case a Boolean expression can be used. Since ASLan v.1.1 rewrite
rules admit only conjunctions of conditions, we use an auxiliary function
positiveGuards for computing the DNF (disjunctive normal form) and re-
turning the list of clauses in it. Analogously, negativeGuards computes the
DNF of the negated guard, and returns its clauses. For computing the DNF,
we expand implications of the form P => Q as !P | Q.

For each of these clauses a branching rule will be created and added to
the translation, leading to the apposite branch. Furthermore, evaluation of

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 42/92

the guards should not remove facts from the state, so we assume a further
function renewPositiveFactsIn that renews the positive facts in the clause.

Example 6 Let p, q and q’ be predicates defined in BidM on agents, and
the following branch occurs at step sl:

if (p(Actor)) then
q(Actor)

else
q’(Actor)

fi

We will then create one rule leading to the first branch if p(Actor) is satisfied

state_BidM(Actor,BP,M,IID,sl).p(Actor)
=>

state_BidM(Actor,BP,M,IID,branch(sl, 0)).p(Actor)

and another leading to the second branch if instead p(Actor) is not satisfied

state_BidM(Actor,BP,M,IID,sl).not(p(Actor))
=>

state_BidM(Actor,BP,M,IID,branch(sl, 1))

Parsing the two branches separately will give rise to the following rules

state_BidM(Actor,BP,M,IID,branch(sl, 0))
=>

state_BidM(Actor,BP,M,IID,succ(branch(sl, 0))).q(Actor)
state_BidM(Actor,BP,M,IID,succ(branch(sl, 0)))

=>
state_BidM(Actor,BP,M,IID,succ(sl))

state_BidM(Actor,BP,M,IID,branch(sl, 1))
=>

state_BidM(Actor,BP,M,IID,succ(branch(sl, 1))).q’(Actor)
state_BidM(Actor,BP,M,IID,succ(branch(sl, 1)))

=>
state_BidM(Actor,BP,M,IID,succ(sl))

2

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 43/92

Example 7 A guard can be a general Boolean expression, which will always
be reduced to a disjunctive normal form like

c1 ∨ . . . ∨ cn

where the clauses c1 . . . cn are conjunctions of (possibly negated) predicates.
For each of these clauses, we need a rewrite rule checking it on its LHS,

and leading to a common RHS (except for the positive facts of the clause
that are renewed).

Consider the following branch, where p, r and s are constant facts here.

if ((p | not(r)) & not(s)) then
q(Actor)

else
q’(Actor)

fi

Here the DNF obtained is

(p ∧ not(s)) ∨ (not(r) ∧ not(s))

Therefore the obtained rules will be

state_BidM(Actor,BP,M,IID,sl).p.not(s)
=>

state_BidM(Actor,BP,M,IID,branch(sl, 0)).q(Actor).p
state_BidM(Actor,BP,M,IID,sl).not(r).not(s)

=>
state_BidM(Actor,BP,M,IID,branch(sl, 0)).q(Actor)

as to the case where the guard holds. For the opposite case, i.e. guard
evaluation fails, we will proceed similarly but considering the negated guard,
whose DNF is

(not(p) ∧ r) ∨ s
generating the following rules

state_BidM(Actor,BP,M,IID,sl).not(p).r
=>

state_BidM(Actor,BP,M,IID,branch(sl, 1)).q’(Actor).r
state_BidM(Actor,BP,M,IID,sl).s

=>
state_BidM(Actor,BP,M,IID,branch(sl, 1)).q’(Actor).s

2

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 44/92

Note, finally, that, before any actual translation of the statement is put
in place, the function adaptGuard, which we will present in detail in § 4.9, is
applied to each clause of the guard’s DNF to convert all logical connectives
into ASLan v.1.1 equivalent predicates. This approach will be applied to all
statements using guards.

4.8.10 Loop

Loop(stmt, rest, sl, return_sl) {

stmt = "while" Guard Body

p_1..p_n = positiveGuards(Guard)
n_1..p_m = negativeGuards(Guard)

apply adaptGuard to p_1..p_n and n_1,..,n_m

% positive branches, i.e. Guard satisfied
for (i from 1 to n) {

LHS = state fact for this entity, with step label sl.
state facts for the owners of variables appearing in p_i

RHS = state fact for this entity, with step label branch(sl, 0).
state facts for the owners of variables appearing in p_i

add
LHS.p_i "=>" RHS.renewPositiveFactsIn(p_i)

to "section rules" in the translation
}

% negative branches, i.e. Guard not satisfied
for (i from 1 to m) {

LHS = state fact for this entity, with step label sl.
state facts for the owners of variables appearing in n_i

RHS = state fact for this entity, with step label succ(sl).
state facts for the owners of variables appearing in n_i

add
LHS.n_i "=>" RHS.renewPositiveFactsIn(n_i)

to "section rules" in the translation
}

ParseCode(Body, branch(sl, 0), sl)
ParseCode(rest, succ(sl), return_sl)

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 45/92

}

A while construct translates in a very similar way to the if construct:
two sets of rules are created, one set of which leading to the body of the
loop (if the guard is satisfied) and the other leading outside the loop (if the
guard is not satisfied). Then the body is parsed, and given as return step
label the step label for evaluation of the guard, so that it will be reevaluated.
Ultimately, the remaining statements are parsed.

Example 8 Consider the following loop

while (p) {
q

}

We will create one rule leading inside the loop if p is satisfied

state_BidM(Actor,BP,M,IID,sl).p
=>

state_BidM(Actor,BP,M,IID,branch(sl, 0)).p

and another leading outside of the loop if instead p is not satisfied

state_BidM(Actor,BP,M,IID,sl).not(p)
=>

state_BidM(Actor,BP,M,IID,succ(sl))

Parsing the inner statements of the loop, we will obtain the following rules

state_BidM(Actor,BP,M,IID,branch(sl, 0))
=>

state_BidM(Actor,BP,M,IID,succ(branch(sl, 0))).q
state_BidM(Actor,BP,M,IID,succ(branch(sl, 0)))

=>
state_BidM(Actor,BP,M,IID,sl)

2

4.8.11 Select

Select(stmt, rest, sl, return_sl) {

stmt = "select" "{"
"on" Guard_1 ":" Stmt_1

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 46/92

...
"on" Guard_g ":" Stmt_g

"}"

for (i from 1 to g) {
p_1..p_n = positiveGuards(Guard_i)

apply adaptGuard to p_1..p_n

% positive branches only, i.e. Guard satisfied
for (j from 1 to n) {

LHS = state fact for this entity, with step label sl.
state facts for the owners of variables appearing in p_j

RHS = state fact for this entity, with step label branch(sl, 0).
state facts for the owners of variables appearing in p_j

add
LHS.p_j "=>" RHS.renewPositiveFactsIn(p_j)

to "section rules" in the translation
}

ParseCode(LeftStmt, branch(sl, i), succ(sl))
}

ParseCode(rest, succ(sl), return_sl)
}

The select construct allows one to nondeterministically pick one code
block provided its guard is satisfied. If no guard is satisfied, it blocks until
one is.

The guards in a select statement typically contain receive conditions,
which are translated with the adaptGuard function as described in § 4.9.

This translates in a way similar to an if construct, differing in the fol-
lowing two aspects:

• the number of branches varies according to the number of different code
blocks contained, and

• there is no branching for failed evaluation of guards, since the construct
blocks until one is satisfied.

Example 9 The methods

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 47/92

select {
on p_1 : q_1
...
on p_n : q_n

}

will be translated to the following rules

state_BidM(Actor,BP,M,IID,sl).p_1
=>

state_BidM(Actor,BP,M,IID,branch(sl, 1)).p_1.q_1
state_BidM(Actor,BP,M,IID,branch(sl, 1))

=>
state_BidM(Actor,BP,M,IID,succ(sl))
...
state_BidM(Actor,BP,M,IID,sl).p_n

=>
state_BidM(Actor,BP,M,IID,branch(sl, n)).p_n.q_n
state_BidM(Actor,BP,M,IID,branch(sl, n))

=>
state_BidM(Actor,BP,M,IID,succ(sl))

2

4.8.12 Assert

Assert(stmt, rest, sl, return_sl) {

stmt = "assert" assertion-name ":" "exists" V_1,..,V_n
"." Guard

W_1,..,W_m = intersection of variables of Guard (but
excluding V_1,..,V_n) and the variables in the
scope of the entity

check = fresh predicate, the name of which includes
assertion-name, on m variables of type agreeing with
W_1,..,W_m plus the entity instance ID (IID)

LHS = state fact for this entity, with step label sl.
state facts for the owners of W_1,..,W_m

RHS = state fact for this entity, with step label succ(sl).

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 48/92

state facts for the owners of W_1,..,W_m.
check(W_1,..,W_m,IID)

add
LHS "=>" RHS

to "section rules" in the translation

add
G(check(W_1,..,W_m,IID).S => exists V_1,..,V_n. Guard)

to the "section goals" in the translation, where S is the
state fact for this entity, with step label succ(s1).

ParseCode(rest, succ(sl), return_sl)
}

An assert statement is translated into two rules, one adding a fresh
predicate check, whose purpose is just to tag the state so to make references
possible in the goal section, and the other removing the predicate. In fact,
the assertion itself (i.e. the Guard whose satisfaction is required) is checked
via an extra goal, checking that in the state where this predicate appears, the
Guard holds. The exists V_1,..,V_n. Guard part in the above definition
is further translated as given in § 4.13.

4.9 Translation of Guards
In some of the previous sub-procedures, we made use of a function adaptGuard.
This is a minor and straightforward procedure that only replaces all appli-
cations of logical connectives with ASLan v.1.1 predicates, as specified in
Table 2. Note that the | (disjunction) and => (implication) operators are
not included since there is no corresponding predicate in ASLan v.1.1, and
coherently the function will be only applied to separate clauses of disjunctive
normal forms. The function adaptGuard recursively follows the term struc-
ture of the guard and does the substitutions defined in Table 2. Note that
the translation of sub-terms (i.e. ’atoms’ from the logical point of view) is
specified in § 4.10.

4.10 Translation of Terms
In § 4.8, we presented a procedure for translating ASLan v.2 statements
into ASLan v.1.1 transitions, but we did not apply any translation of terms.
There are two reasons behind this:

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 49/92

Table 2: Substitutions done by the adaptGuard function

ASLan v.2 operator ASLan v.1.1 predicate
!G not(G)
G_1 & G_2 G_1.G_2
T_1 = T_2 equal(T_1,T_2)

• Split the translation into a higher level (of statements) and a lower one
(of terms contained in them), allowing for cleaner exposition and ease
of understanding.

• In most cases, ASLan v.2 terms can be easily replaced by equivalent
terms in ASLan v.1.1 by means of semantically equivalent predicates.
However, there are a few exceptions (e.g. set literals and assignment
of variables by pattern matching) that can not be handled by simply
replacing the term with another, as they affect the entire resulting rule
for the statement that contains the term.

The approach followed is therefore to defer translation of terms, carrying
over the original ones during translations of statements (and guards included
in them), and then apply a term translation procedure to the generated rule,
which we describe in the following.

Consider a rule R of the form

LHS =[exists E]=> RHS

and let us apply the procedure to R. Suppose that R is now in an inter-
mediate state where both ASLan v.1.1 and ASLan v.2 predicates (namely,
transmission events) may appear, of which only the latter need be translated
but all need be processed recursively for contained terms. For each predicate
in R, we recursively traverse each (sub-)term T according to its syntactic
form, obtaining the following cases:

• T = c, i.e. T is a constant c. In this case we leave c as is.

• T = V, i.e. T is a variable V. The case is similar to the above one for
constants, except that the variable name must be bound to its value.
Therefore we add the state fact of the owner of V to both LHS and RHS
of R.

• T = [T_1], i.e. T is the default pseudonym for a term T_1 (which must
be of type agent). Then T will be replaced by the function

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 50/92

defaultPseudonym(T_1’,IID)

where T_1’ is the recursive translation of T_1 and IID is the instance
ID associated to the state fact of T_1.

• T = [T_1]_[T_2], i.e. T represents an explicitly given pseudonym T_2
for the agent represented by term T_1. In this case, the result is simply
the recursive translation of T_2.

• T = T_1.T_2..T_n, i.e. T is the concatenation of terms T_1,T_2,..,
T_n. In this case, we apply the binary predicate pair to T_1 and the
recursive application of pair to T_2..T_n, and finally apply the terms
translation procedure recursively on each of T_1,..,T_n.

• T = (T_1,T_2,..,T_n), i.e. T is a tuple containing the terms T_1,T_2,
..,T_n. This case is translated exactly as the one for concatenation.

• T = { T_1,T_2,..,T_n }, i.e. T is a set literal, containing the element
terms T_1,T_2,..,T_n. Note that this case appears only in an assign-
ment of a variable V of type A set where A is the element type shared
by all T_1,T_2,..,T_n. We create then a fresh constant sc of the same
type A set. Then we substitute T by sc, and add to the RHS of R the
facts contains(sc,T_1),..,contains(sc,T_n). Ultimately we proceed
recursively on each of T_1,T_2,..,T_n.

• T = ?, i.e. T pattern-matches anything, which is allowed only in guards,
i.e. on the LHS of R. In this case, we just create a fresh variable name
V’ and replace T by V’.

• T = ?V, i.e. T represents an assignment of V by pattern-matching, which
is allowed only in guards, i.e. on the LHS of R. We add the state fact
of the owner of V to both the LHS and RHS of R where we replace the
variable name V in the left state fact by a fresh variable name V’. For
example, if p(?V) then q(V) fi is translated to
state_X(V’, ...). p(V) => state_X(V,...).p(V).q(V)}.

• T = f(T_1,..,T_n), i.e. T is the application of a function f to the
terms T_1,..,T_n. In the general case, f will be left as is, and we need
only apply the terms translation procedure recursively to T_1,..,T_n.
As to the case where f is a send or a receive, its translation will
change according to the channel model employed, discussed in depth
in § 4.12.

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 51/92

4.11 Translation of the Body Section
Now that we have introduced the procedure ParseCode, parsing the Body
section is straightforward. In particular, we just need invoke

ParseCode(Stmts, sl_0, null)

where Stmts is the body and sl_0 the initial step label (while no return
step label is provided being this the main block of instructions).

Note that, in the case of the root entity, it will also be necessary to add
its state fact with step label sl_0 in section inits in the translation, in
order for the execution to start.

4.12 Translation of Transmission Events
As described in detail in D3.3, we have formalized different models of com-
munication and definitions of channels as assumptions or goals, respectively.
In particular, for channels as assumptions we have three models:

• The Cryptographic Channel Model CCM : here, channels are realized by
certain ways of encrypting messages and transmitting them over secure
channels.

• The Ideal Channel Model ICM : here, we have abstract fact symbols and
special transition rules that model the intruder’s limited ability to send
and receive on those channels. (For instance, he can see everything that
is transmitted on an authentic channel, but he can only send under any
identity that he controls.)

• The Abstract Channel Model ACM : similar to the ICM, but using ex-
plicit send and receive events that are constrained by an LTL formula
over the traces.

We have shown in [4,14] that CCM and ICM are equivalent under certain
realistic assumptions, and we are working to obtain a similar result between
ICM and ACM. Establishing such equivalence results is namely fundamental
as they allow us to use each model interchangeably, according to what fits
best with certain analysis methods. In this regard, each of these models has
its strengths:

• The CCM allows one to model channels within tools that do not have
support for channels, because it requires only the standard crypto-
graphic primitives and the intruder deduction machinery that is inte-
grated in all the back-ends of the AVISPA Tool that are providing a

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 52/92

basis for the AVANTSSAR platform. Also, it allows for using the op-
timization that an insecure network and the intruder can be identified,
i.e. we have a compressed transition where the intruder sends a mes-
sage that is received and answered to by the receiver, and the intruder
immediately intercepts that answer.

• The ICM is more helpful in a different class of tools where the number
of transitions is less problematic, but the complexity of terms is an
issue. Also, it is the abstract reference model for our compositionality
results between channels as assumptions and channels as goals.

• The ACM, finally, allows for the modeling of channels like resilient
channels (i.e. every message is eventually received) expressed as LTL
constraints on the sending and receiving.

We will discuss the translation of channels when used as goals in the next
subsection. Here, we focus on the translation of channels when used as an
assumption, which depends on the choice of the communication model as we
discussed in detail in D3.3. In this case, we take into account the send and
receive predicates generated after the preprocessing phase described in § 4.1.
In order to make explicit that both the translation and the interpretation
of such predicates can be different according to the communication model
chosen, let us illustrate the translation(s) at hand of a concrete example (we
proceed analogously for the other cases).

Assume that the translation process has proceeded up to the point of
producing a transition rule that includes an agent receiving a message M1 on
a secure channel from A and sending a message M2 under pseudonym P to B
also on a secure channel:

A *->* Actor: M1
[Actor]_P *->* B : M2

L =[V]=> R

The final translation into ASLan v.1.1 in the three models is as follows:

• CCM:

iknows(crypt(ck(Actor),crypt(inv(ak(A)),stag.Actor.M1))).L
=[V]=>
R.iknows(crypt(ck(B),crypt(inv(P),stag.B.M2)))

• ICM:

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 53/92

secCh(A,Actor,M1).L
=[V]=>
R.secCh(P,B,M2)

• ACM:

rcvd(Actor,A,M1,ch(A,Actor,secure)).L
=[V]=>
R.sent(Actor,P,B,M2,ch(P,B,secure))

Here, ch(...) is a function to create a channel identified from the given
identities and the type of channel.

Note that each model may introduce a number of symbols, facts, and rules
necessary to express the different channels as defined in D3.3; for instance,
the CCM introduces a function ck, the ICM a fact secCh, and ACM facts
sent and rcvd, amongst many others.

4.13 Translation of Goals
In the case of goals, in a similar way as for guards, we need to translate the
LTL operators in ASLan v.1.1 predicates, according to Table 3.

After doing so, the terms contained in the goal formulae must be con-
verted, by means of a slight variant of the procedure introduced in § 4.10
(which we omit).

4.13.1 Channels as Goals

As we described above, we can use the bullet annotations to specify goals of a
service using the different kinds of channels. Intuitively, this means that the
service should ensure the authentic, confidential, or secure transmission of the
respective message. These definitions are close to standard authentication
and secrecy goals of security protocols, e.g. [7, 10, 13].

In order to formulate the goals in a service-independent way, we use,
in the translation, a set of auxiliary events (modeled as ASLan v.1.1 facts)
of the service execution as an interface between the concrete service and
the general goals. The use of such auxiliary events is common to several
approaches (including, most notably, AVISPA IF and Casper [11]). More
specifically, we consider the following kinds of fact symbols:

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 54/92

Table 3: Translation of goal operators

Operator ASLan v.2 connective ASLan v.1.1 predicate
¬ !f not(f)
= f_1 = f_2 equal(f_1,f_2)
∧ f_1 & f_2 and(f_1,f_2)
∨ f_1 | f_2 or(f_1,f_2)
⇒ f_1 => f_2 implies(f_1,f_2)
∀ forall V_1,..,V_n.f forall(V_1,..forall(V_N,f)..)
∃ exists V_1,..,V_n.f exists(V_1,..exists(V_N,f)..)

neXt X(f) X(f)
Yesterday Y(f) Y(f)
Finally F(f) F(f)
Once O(f) O(f)

Globally G(f) G(f)
Historically H(f) H(f)

Until U(f_1,f_2) U(f_1,f_2)
Release R(f_1,f_2) R(f_1,f_2)
Since S(f_1,f_2) S(f_1,f_2)

witness(agent,agent,SID,msg)
request(agent,agent,SID,msg)
whisper(agent,msg)
hear(agent,msg)

where SID is an appropriate type to hold an identifier for a particular goal
(such as an ID of the service-type).

These events provide an interface over which we define service properties
in LTL formulae. Each specification of a channel as a goal (as described in
§ 3.4) implies the creation of such events within the execution of a particu-
lar entity; in particular the translation to ASLan v.1 decorates appropriate
transition rules with these facts in a way that we describe now.

For ease of description, consider the following example:

entity Session (A, B: agent) {
symbols Payload: payload;
entity Alice(Actor, B: agent) {

...
Actor.send(B,...Payload...)
...

}

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 55/92

entity Bob(Actor, A: agent) {
symbols Payload: payload;
...
Actor.receive(A,...?Payload...)
...

}
body {

new Alice(A,B);
new Bob (B,A);

}
goals

g1: A *->* B: Payload;
}

The translator shall decorate this with the following events:
entity Session (A, B: agent) {

symbols Payload: payload;
entity Alice(Actor, B: agent) {

witness(Actor,B,g1,Payload)
whisper(B,Payload)
...
Actor.send(B,...Payload...)
...

}
entity Bob(Actor, A: agent) {

symbols Payload: payload;
...
Actor.receive(A,...?Payload...)
...
request(A,Actor,g1,Payload)
hear(Actor,Payload)

}
body {

new Alice(A,B);
new Bob (B,A);

}
goals

g1: A *->* B: Payload;
}

where witness and request are generated through the authenticity part of
the goal, and whisper and hear result from the confidentiality part. Thus,

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 56/92

the respective events are inserted as early as possible in the sender entity,
and as late as possible in the receiver role. When using a pseudonym P,
then sender or receiver name will simply be replaced by that in the goal, e.g.
witness(P,B,g1,Payload).

We can now define the goals of confidentiality and authenticity as LTL
formulae over the given facts without referring to the particularities of the
specified entities such as the message formats.

Consider the following formulae.

forall A,B,S,M. G
(request(A,B,S,M) => (O (witness(A,B,S,M)) ||

(dishonest(A) & iknows(M))))

forall B,S,M. G
((whisper(B,S,M) & iknows(M)) => dishonest(B))

forall B,S,M. G
(hear(B,S,M) => (O (whisper(B,S,M)) || iknows(M)))

The first is a standard authentication goal (non-injective agreement [10])
with the additional condition that, if the sender is dishonest, then the in-
truder must know this message. This requirement is necessary for the compo-
sitionality property of our channel definition (otherwise the channels are too
weak to achieve compositionality) as explained in more detail in [14]. The
second formula gives the standard secrecy goal (if the intruder knows a secret
of an honest agent for another agent B, then B must be a dishonest agent or
it is a violation). Finally, the last goal is a similar extension to secrecy as the
above mentioned extension to channels: in case an honest agent receives a
secret, it was indeed sent either by some honest or by some dishonest agent,
and in the latter case, the intruder must know it.

This concludes the procedure for translating ASLan v.2 specifications into
ASLan v.1.1 specifications. We now consider some concrete examples.

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 57/92

5 ASLan v.2 examples
In this section, we assess ASLan v.2 with its new features against a selection
of problem cases taken from Deliverable D5.1 [5]; see also Deliverable D2.1 [3],
in which we described the requirements for ASLan that we extracted from
the case studies and the corresponding features of ASLan v.1. In order to
be able to formally model static service and policy composition, ASLan v.2
shows a number of advantages with respect to v.1 such as:

• Control flow constructs (e.g. while and if) allow for better readability
and conciseness of the specifications, and make the specification easier
for modelers who are already familiar with programming languages.

• Modularity can be seen in all the examples by the use of entities. Each
entity is specified separately and can then be composed with others,
in the spirit of object-oriented programming. This allows the speci-
fier to localize policies in each entity by making it clear, e.g., who is
responsible to grant or deny certain authorization requests as well as
the various trust relationships between entities. All these features are
particularly evident in the Car Registration scenario in § 5.1, but they
are also illustrated in the case studies Loan Origination Process § 5.2
and Digital Contract Signing in § 5.3.

• Furthermore, ASLan v.2 provides easier ways to specify communication
and service compositionality by using a suitable, intuitive notation for
channels that are used both as service assumptions and as service goals.
This feature is illustrated in the Identity Mixer case study in § 5.4.

5.1 Car registration
The car registration scenario has been described in Deliverable D5.1 (Problem
Cases and their Trust and Security Requirements [5]) and formalized in a
simplified version in Deliverable D2.1 (Requirements for modeling and ASLan
v.1 [3, §4.3]).

Here, we present the same example in the same simplified version but
expressed in the new ASLan v.2, to demonstrate the greatly enhanced read-
ability and modularity of the ASLan v.2 model in comparison with v.1.

When comparing the model given in [3, §4.3] specified in ASLan v.1 with
the one given below specified in ASLan v.2, one will notice an enormous gain
in readability and conciseness, in particular when comparing the unstruc-
tured set of transition rules with the structured blocks of (object-oriented
programming language style) statements. Such a comparison also shows

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 58/92

that the specification of policies is now modular: rather than being defined
globally, they are now defined as locally as possible and combined statically.
This not only enhances readability, but also maintainability of the model.

The following ASLan module details the abstract DKAL-like policy com-
munication model employed in our car registration model, as introduced
in [3, §4.3].
% Lightweight DKAL %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
entity DKAL {

import Prelude

types
info;

symbols

% DKAL -like policy predicates and functions :
% A piece of information ( represented as an element of
% type info) is known to an agent without involving
% communication at the meta level but possibly at the
% system level. Typically , this kind of knowledge is
% acquired upon reception of a message over the network .

knows0 (agent , info ): fact;
% A piece of information ( represented as an element of
% type info) is known to an agent possibly involving
% communication at the meta level

knows (agent , info ): fact;

% Agents may communicate parts of their knowledge at the
% meta level to other principals (this is a different kind
% of communication with respect to communication at the
% system level ). It is worth noticing that the meta level
% communication is secure and targeted ; e.g., a1 -> saysTo (a2 ,x)
% means that agent a1 says a piece of information x to
% agent a2 and the intruder will have no access to x.
% Notice that the piece of information x in a1 -> saysTo (a2 ,x)
% is part of the knowledge of agent a1 that might have been
% obtained from some other agent a3.

saysTo (agent , agent , info ): fact;
% Instead , if we write a1 -> saysTo0 (a2 ,x), then the piece of
% information x is part of the " internal " knowledge of
% agent a1 , i.e. it is not obtained from some other principal
% but only by some computation , e.g. reception of a message
% over the network at the system level.

saysTo0 (agent , agent , info ): fact;

% The function symbols said and said0 allows one to

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 59/92

% characterize how a piece of information has been obtained
% by an agent. For example , if an agent a1 saysTo an
% agent a2 a piece of information x, then a2 knows
% that a1 said the piece of information x.

said (agent , info ): info;
% The difference between said and said0 is that the latter
% reflects that the piece of information has been acquired
% by a principal without resorting to communication at the
% meta level.

said0 (agent , info ): info;

% The function symbols tdOn and tdOn0 encode trust
% relationships between agents concerning some piece of
% information .

tdOn (agent , info ): info;
tdOn0 (agent , info ): info;

% The difference between tdOn and tdOn0 is that the former
% allows agents to delegate trust while the latter does not.
% For example , the piece of information a tdOn x expresses
% not only trust in the agent a about some piece of
% information x but also a permission for agent a to
% delegate the trust about x.

macros % two useful abbreviations

A-> trusts (B,M) = A->knows(B->tdOn (M));
A-> trusts0 (B,M) = A->knows(B->tdOn0(M));

clauses

% The following Horn clauses characterize (an
% over - approximation of) the DKAL language .

% Internal knowledge is knowledge
knowledge0inf (P, AnyThing ):

P->knows ( AnyThing ) :-
P-> knows0 ( AnyThing );

% An agent knows whatever is said to him and he/she also
% knows whether the piece of knowledge being communicated
% is based on the internal knowledge of the speaker
% ( says2know0 ) or not ( says2knowinf ).

says2know0 (P,Q, AnyThing ):
P->knows (Q->said0( AnyThing )) :-
Q-> saysTo0 (P, AnyThing );

says2knowinf (P,Q, AnyThing ):
P->knows (Q->said( AnyThing )) :-
Q-> saysTo (P, AnyThing );

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 60/92

% An agent P knows a piece of information AnyThing
% whenever P knows that another agent Q said AnyThing
% and P knows that the agent Q is trusted on saying AnyThing

trustapp0 (P,Q, AnyThing ):
P->knows( AnyThing ) :-
P-> trusts0 (Q, AnyThing ) &
P->knows(Q->said0( AnyThing ));

trustappinf (P,Q, AnyThing ):
P->knows( AnyThing ) :-
P-> trusts (Q, AnyThing ) &
P->knows(Q->said( AnyThing ));

} % end entity DKAL

Next, we give the model of the car registration itself. After specifying
the policy-related constants and function names, as well as a macro used as
a shorthand for a lengthy term, it contains entity declarations for each role
in the scenario. In contrast to the version in [3], all policy handling with
Horn clauses, as well as the statements defining the workflow of each role
in the scenario, is specified locally to the entities, which provides a stronger
modularity. Moreover, the workflow can be described more concisely and in
a more readable way using structured OO language-like statements rather
than the low-level transitions of ASLan v.1.
%% Specification of the Car Registration Office in D5.1
entity Environment { %% contains shared ( global ) declarations

%% and all system components as sub - entities

import DKAL %% see DKAL module above

%% -----------------------------------------------------------
%% Global declarations
%% -----------------------------------------------------------

types

doc < message ;
decision < message ;
action < message ;
role < message ;

symbols

% Identifier for the request sent by mike
% (cf. scenario given in Deliverable D5 .1)
doc5_1 : doc;

% Flags saying that a request has been refused or accepted

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 61/92

refused , accepted : decision ;

% Possible actions about a document with respect to the
% central repository : reading or storing
readDoc , % unused in this example
storeDoc : action ;

% Possible roles of employees
head , employee : role;

% Meta level construct corresponding to action certificates :
canStoreDoc (agent ): info;

% Meta level construct corresponding to role certificates :
hasRole (agent , role ): info;

% Primitive to create a role certificate by the certification
% authority , i.e. an employee can either be a ( simple )
% employee or the head of a car registration office
rolecert (agent , role ): doc;

macros

signedRoleCert (Empl ,Role) =
sign(inv( public_key (theCA )), rolecert (Empl ,Role ));

symbols

% flags that a citizen sent a certain request document
citizen_sent (doc ): info;

% Constants identifying the central repository and the
% certification authority of the car registration office
centrRep , theCA: agent;

% Constants identifying persons in scenario in D5 .1:
% melinda (head), peter ( employee ), and mike ( citizen )
melinda , peter , mike: agent;

%% --------------------------------------------------------
%% individual entities
%% --------------------------------------------------------

entity CA(Actor: agent) {

body {

% The certification authority of the car registration

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 62/92

% office has generated a certificate about the role of
% Melinda (i.e. head of the car registration office )
send(peter , signedRoleCert (melinda ,head ));
% Generally , should be broadcast to all employees

% The certification authority of the car registration
% office has generated a certificate about the role of
% Peter (i.e. employee of the car registration office )
send(peter , signedRoleCert (peter , employee ));

}
}

entity Citizen (Actor: agent) {

symbols

Empl: agent;
Decision : decision ;

body {

send(peter ,sign(inv( public_key (Actor )), doc5_1 .Actor ));
Actor -> saysTo0 (centrRep , citizen_sent ( doc5_1 ));

receive (peter ,? Empl .? Decision . doc5_1 ); % better if signed
% any reaction to the decision

}
}

% Registration office head %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Note that we cannot express (but actually do not need
% here) the fact that Head is a special form of Employee .
entity Head(Actor: agent , Empls: agent set) {

clauses

% The head of the car registration office , once he/she
% has decided to grant the capability of storing
% processed requests in the central repository to one of
% his/her employees , he/she is willing to share this
% information with anyone , in particular with Peter
GenerateCert (Actor ,Empl , AnyOne ):

Actor -> saysTo0 (AnyOne ,Empl -> canStoreDoc ) :-
Actor -> knows0 (Empl -> canStoreDoc );

% The head of the car registration office , e.g. Melinda ,
% decides that all his/her employees , e.g. Peter ,
% have enough experience to store
% accepted requests in the central repository

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 63/92

AllEmplsCanStoreDoc : forall Empl.
Actor -> knows0 (Empl -> canStoreDoc ) :- Empls -> contains (Empl );

}

% ( Simple ) employee %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
entity Employee (Actor: agent) {

symbols

% input predicate (for employees ): we abstracted away how
% an employee decides whether a request is correct or not
isok : doc -> fact;

clauses

% An employee getting a certificate from the certification
% authority about some agent in the car registration office
% is willing to tell this to anyone , in particular centrRep
Cert1(Actor ,Cert , AnyOne ):

Actor -> saysTo (AnyOne ,theCA ->said0(Cert )) :-
Actor ->knows(theCA ->said0(Cert ));

% An employee getting a certificate from the head of the
% car registration office about some agent that is entitled
% to store documents in the central repository is willing
% to tell this to anyone , in particular to centrRep
Cert2(Actor ,Head ,Cert , AnyOne ):

Actor -> saysTo (AnyOne ,Head ->said0(Cert )) :-
Actor ->knows(Head ->said0(Cert )) &
Actor ->knows(theCA ->said0(Head -> hasRole (head )));

symbols

Empl1 , Citizen : agent;
Key: inv( public_key );
Signed_Doc , Doc: doc;

body {

% The contents of the request sent by the citizen
% correctly supports his/her request
Actor -> knows0 (isok( doc5_1 ));

while (true) {
select {

% The employee asserts at the meta level
% that he/she has received a certificate about
% the role of a ( possibly different ) agent Empl1
on receive (theCA , signedRoleCert (? Empl1 ,? Role )) {

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 64/92

Actor -> knows0 (theCA ->said0(Empl1 -> hasRole (Role )));
}

on receive (Citizen ,? Signed_Doc )
& Signed_Doc = sign (?Key ,? Doc .? Citizen ) {

if(Key = inv( public_key ( Citizen )))
if(Actor ->knows(isok(Doc ))) {

% The employee accepts a request Doc by a Citizen
% if the request is correctly signed
% and all criteria are met.
% He causes two actions by the employee who has
% processed the request : sending an acknowledgement
% to the citizen that the request has been accepted
% and asking the central repository to store the
% processed request
send(centrRep ,sign(inv( public_key (Actor )),

Actor. accepted . Signed_Doc ). storeDoc );
% typically , at this point the employee should
% check for feedback from centrRep and if negative ,
% it should not claim acceptance to the Citizen
send(Citizen ,Actor. accepted .Doc ); % better if signed

}
else

% The employee refuses a request Doc by a Citizen
% if the request is correcly signed but some other
% criterion ( abstracted away in this specification )
% is not met.
% Rejection is acknowledged to the Citizen .
send(Citizen ,Actor. refused .Doc) % better if signed

fi
else
% The employee refuses a request Doc by a Citizen if
% the request is not signed by the Citizen sending it.
% Rejection is acknowledged to the Citizen .

send(Citizen ,Actor. refused .Doc) % better if signed
fi

}
}

}
}

}

% Central Repository %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
entity CentralRepository (Actor: agent) {

clauses

% unused : The central repository trusts the
% certification authority of the car registration office

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 65/92

centrRepTrustCA ( AnyThing ):
Actor -> trusts0 (theCA , AnyThing );

% The central repository trusts anyone when communicating
% a certificate emitted by the certification authority of
% the car registration office
centrRepTrustAnyoneViaCA (AnyOne , AnyThing ):

Actor -> trusts (AnyOne ,theCA ->said0( AnyThing ));

% The central repository trusts anyone presenting a
% certificate emitted by the head of a car registration
% office if there exists a certificate of the fact that
% the emitter is the head of the car registration office
centrRepTrustAnyoneViaHead (AnyOne , AnyThing ):

Actor -> trusts (AnyOne ,Head ->said0( AnyThing )) :-
Actor ->knows(theCA ->said0(Head -> hasRole (head )));

% The central repository trusts the head of a car
% registration office when this emits a certificate about
% the capability of storing processed requests , once it
% has checked that there are certificates proving that
% he/she is the head of a car registration office and
% that the subject of his/her certificate is an employee
centrRepTrustHead (Head ,Empl ):

Actor -> trusts0 (Head ,Empl -> canStoreDoc ) :-
Actor ->knows(theCA ->said0(Head -> hasRole (head ))) &
Actor ->knows(theCA ->said0(Empl -> hasRole ( employee ));

symbols

DocDB: message set;
Signed_Doc : message ;
Empl: agent;

body {

DocDB := {};

while (true) {
select {

% Upon reception of a request to store a document
% in the data base , check whether the employee asking
% for this to be done has the right to do this.
% If so , the request is added to the data base
on receive (Empl ,? Signed_Doc . storeDoc ) &

Signed_Doc = sign(inv( public_key (? Empl )),
Empl. accepted .? Doc) &

Actor ->knows(Empl -> canStoreDoc ) {
assert stored_req_is_double_signed_and_sent_by_citizen :

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 66/92

exists Cit Req.
Signed_Doc = sign(inv( public_key (Empl )), Empl. accepted .

sign(inv( public_key (Cit )), Req.Cit )) &
Actor ->knows(Cit ->said0( citizen_sent (Req )));

DocDB -> insert ( Signed_Doc );
}

}
}

}
}

body { % initialization of the overall system

new CA( theCA );
new CentralRepository ( centrRep );

new Head(melinda ,{ peter });
new Employee (peter );

% A citizen , called Mike , sends a request to the car
% registration office . The request which will be handled
% in the office by the employee Peter.
new Citizen (mike );

}

goals

%% add any further goals here as LTL formulas

} % end Environment

Note that the integrity goal of documents stored in the central repos-
itory, as stated in [3], is modeled above as an assertion with the name
stored_request_is_double_signed_and_sent_by_citizen that is sup-
posed to hold at specific points in the execution of the system.

Finally, a sample derivation of centrRep->knows(peter->canStoreDoc)
is given to demonstrate the interplay of the Horn clauses and message trans-
missions defined in the above model. Note the names of Horn clauses with
their actual parameters, which greatly help to trace the use of Horn clauses.

centrRep->knows(peter->canStoreDoc)
<= [ via trustapp0(centrRep,melinda,peter->canStoreDoc) ]

centrRep->trusts0(melinda,peter->canStoreDoc)
<= [ via centrRepTrustHead(melinda,peter) ]

centrRep->knows(theCA->said0(melinda->hasRole(head)))
<= [ via trustappinf(centrRep,peter,theCA->said0(melinda->hasRole(head))) ]

centrRep->trusts(peter,theCA->said0(melinda->hasRole(head)))
<= [ via centrRepTrustAnyoneViaCA(peter,melinda->hasRole(head)) ]

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 67/92

centrRep->knows(peter->said(theCA->said0(melinda->hasRole(head))))
<= [via says2knowinf(centrRep,peter,theCA->said0(melinda->hasRole(head)))]

peter->saysTo(centrRep,theCA->said0(melinda->hasRole(head)))
<= [ via Cert1(peter,melinda->hasRole(head),centrRep) ]

peter->knows(theCA->said0(melinda->hasRole(head)))
<= [ via knowledge0inf(peter,theCA->said0(melinda->hasRole(head))) ]

peter->knows0(theCA->said0(melinda->hasRole(head)))
<= [ via Employee code ]

receive(signedRoleCert(melinda,head))
<= [ via CA code ]

send(signedRoleCert(melinda,head)) % body
centrRep->knows(theCA->said0(peter->hasRole(employee))
<= [ via trustappinf(centrRep,peter,theCA->said0(peter->hasRole(employee))) ]

centrRep->trusts(peter,theCA->said0(peter->hasRole(employee)))
<= [ via centrRepTrustAnyoneViaCA(peter,peter->hasRole(employee)) ]
centrRep->knows(peter->said(theCA->said0(peter->hasRole(employee))))
<=[via says2knowinf(centrRep,peter,theCA->said0(peter->hasRole(employee)))]

peter->saysTo(centrRep,theCA->said0(peter->hasRole(employee)))
<= [ via Cert1(peter,peter->hasRole(employee),centrRep) ]

peter->knows(theCA->said0(peter->hasRole(employee)))
<= [ via knowledge0inf(peter,theCA->said0(peter->hasRole(employee))) ]

peter->knows0(theCA->said0(peter->hasRole(employee)))
<= [ via Employee code ]

receive(signedRoleCert(peter,employee))
<= [ via CA code ]

send(signedRoleCert(peter,employee)) % body
centrRep->knows(melinda->said0(peter->canStoreDoc))
<= [ via trustappinf(centrRep,peter,melinda->said0(peter->canStoreDoc)) ]

centrRep->trusts(peter,melinda->said0(peter->canStoreDoc))
<= [ via centrRepTrustAnyoneViaHead(peter,peter->canStoreDoc) ]

centrRep->knows(theCA->said0(melinda->hasRole(head))) % see above
centrRep->knows(peter->said(melinda->said0(peter->canStoreDoc)))
<= [ via says2knowinf(centrRep,peter,melinda->said0(peter->canStoreDoc) ]

peter->saysTo(centrRep,melinda->said0(peter->canStoreDoc))
<= [ via Cert2(peter,melinda,peter->canStoreDoc,centrRep) ]

peter->knows(melinda->said0(peter->canStoreDoc))
<= [ via says2know0(peter,melinda,peter->canStoreDoc) ]

melinda->saysTo0(peter,peter->canStoreDoc)
<= [ via GenerateCert(melinda,peter,peter) ]

melinda->knows0(peter->canStoreDoc) % initial fact
peter->knows(theCA->said0(melinda->hasRole(head)))

<= [ via knowledge0inf(peter,theCA->said0(melinda->hasRole(head))) ]
peter->knows0(theCA->said0(melinda->hasRole(head)))

<= [ via Employee code ]
receive(signed(rolecert(melinda,head))
<= [ via CA code ]

send(signedRoleCert(melinda,head)) % body

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 68/92

5.2 Loan Origination Process
The loan origination business process (LOP) has also been described in De-
liverable D5.1 [5] and an excerpt of the formalization was presented in De-
liverable D2.1 [3].

Thanks to the better modularity, readability and conciseness of ASLan
v.2, we can present here a more complete specification of the LOP where the
behavior of all the entities (bank process engine, task engine, etc) is defined,
and show that the aspects we wanted to model, like the static separation of
duty (SSOD) check, are still expressible in the new language. Certain features
such as communication have been abstracted away, as they are irrelevant for
the security aspects we want to show here. All these important and security
relevant features could be easily added (and will be added in the future) by
moving to a different abstraction level better capturing the real system, but
featuring a bigger search space.

We recall that the LOP describes a bank’s evaluation of a customer’s
request for a loan. The bank comprises two main entities: the process engine
which listens for customers’ requests and initiates new LOP workflows, and
a task engine which manages access control and task execution.

The customer and the process engine are modeled here in a simple way,
where the customer just sends a request for a loan, and the bank’s process
engine receives and processes it. But other customer’s requests could be
easily added to trigger additional processes at the bank side (e.g. opening a
bank account).
%% A customer can send a loan request
%% to a Bank Process Engine
entity Customer (Actor , BankPE : agent) {

body
send(BankPE , loan_request );

}

%% The bank process engine listens for loan request
%% from customers and initiates LOP workflows
entity BankPE ( Actor : agent) {

types
BPI : nat;
C : agent;

body
while (true) {

%% wait for a customer ’s request
receive (?C, loan_request );
%% generate a new business process instance (BPI)

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 69/92

BPI := fresh ();
%% initiate a new LOP worflow associated to BPI
done(start ,BPI );

}

}

For the sake of simplicity, we model here a simplified version of the work-
flow (with respect to D5.1 [5]), where we focus on the internal executions
at the bank (the interaction with the credit bureau is not considered). But
this is sufficient to show how a business process can be specified in ASLan
v.2. One key ingredient is to capture standard control workflow artifacts
such as fork, join, choice or merge. For instance, this can be done by using
two facts: done and ready. A task is marked as done when it has been
executed, and as ready when it is ready to be executed. For example, the
execution of inputCustData enables two tasks, corresponding to a fork. And
the approval task depends on two tasks, like a join. We could easily model
choice and merge as well.
%% simplified LOP workflow
entity LOP {

body

while (true) {
compressed {

select {
on done(start ,? BPI) {

ready( inputCustData ,BPI );
}
%% fork
on done( inputCustData ,? BPI) {

ready(intRating ,BPI );
ready(extRating ,BPI );

}
%% join
on done(intRating ,? BPI) & done(extRating ,BPI) {

ready(approval ,BPI );
}
on done(approval ,? BPI) {

ready(signForm ,BPI );
}

}

}
}

}

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 70/92

In specification languages of business processes such as BPMN, it is pos-
sible to specify access control for business process execution. There are two
notions: potential and excluded owners. The former defines the users or
roles entitled to execute a given task. The latter defines the users or roles
not allowed to execute a given task. The excluded owner has priority over
the potential owner.

This is all modeled in the task engine entity, where the local policy de-
scribes the access control by means of Horn clauses. This policy checks
whether a user is able to execute a task or not, based on the hasRole, po-
tential owner (poto) and excluded owner (exo) relations. The SSOD check
is also done here, preventing a user to execute two tasks under a SSOD
constraint.

The delegation and execution of tasks are specified in the body, as guarded
statements whose firing depends from the evaluation of the clauses.
%% The task engine manages the access control
%% and execution of tasks
entity TaskEngine (Actor: agent) {

symbols

%% acces control
forbidden (user , task_name ) : fact;
granted (user ,role , task_name ) : fact;

U,U1 ,U2 : user;
R,R1 ,R2 : role;
T,T1 ,T2 : task;
TI ,BPI : nat;

clauses

%% if there is a SSOD constraint for T1 and T2
%% and U executed T2
%% then U is not allowed to executed T1
forbid_ssod (U,T1 ,R,T2 ,TI ,BPI) :

forbidden (U,T1) :- ssod(T1 ,T2),
executed (U,R,task(T2 ,TI ,BPI ))

%% forbid access to excluded owners (users)
forbid_excluded (U,T) :

forbidden (U,T) :- exo(U,T)

%% forbid access to excluded owners (roles)
forbid_excluded (U,T,R) :

forbidden (U,T) :- hasRole (U,R), exo(R,T))

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 71/92

%% grant access to potential owners (users)
grant(U,R,T,BPI) :

granted (U,R,T) :- ready(T,BPI), hasRole (U,R),
poto(U,T).

%% grant access to potential owners (roles)
grant(U,R,T,BPI) :

granted (U,R,T) :- ready(T,BPI), hasRole (U,R),
poto(R,T).

body

while (true) {
compressed {

select {
%% delegation
%% if U1 is allowed to execute T1 with role R1 ,
%% he can delegate T1 to another user U2
on hasRole (?U2 ,?R2) & granted (?U1 ,?R1 ,?T1) {

granted (U2 ,R1 ,T1)
}

%% execution
%% an user can execute a task which is ready ,
%% if he is granted and not forbidden by the AC
on granted (?U,?R,?T) & ! forbidden (U,T)

& ready(T,? BPI) {
TI := fresh ();
executed (U,R,task(T,TI ,BPI ))
done(T,BPI );

}
}

}
}

}

In the top level entity Environment, we define a specific scenario of the
business process. We define the users, roles and tasks involved in that sce-
nario, the different relations between them (hasRole, ssod, etc) and we cre-
ate real instances of the different entities. The Environment also comprises
all the entities presented previously.

A very simple scenario can be defined as a task engine and a process
engine of one bank, one customer of that bank, and the LOP workflow. Of
course more complex scenarios could be defined.
entity Environment { %% shared ( global ) entities

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 72/92

types

owner; user < owner; role < owner;
task_name ; task;

symbols

%% ready(TN ,BPI) : task TN is ready to be executed
%% in the BP instance BPI
ready(task_name ,nat) : fact;

%% done(TN ,BPI) : task TN has been executed
%% in the BP instance BPI
done(task_name ,nat) : fact;

%% task(TN ,TI ,BPI) : task name TN + task instance TI
%% + bp instance BPI
task(task_name ,nat ,nat) : task;

%% executed (U,R,T) : user U has executed task T
%% with role R
executed (user ,role ,task) : fact;

%% static separation of duty
ssod(task_name , task_name ) : fact;

%% potential owners
poto(owner , task_name ) : fact;

%% excluded owners
exo(owner , task_name ) : fact;

%% role attribution
hasRole (user ,role) : fact;

pierPaolo ,marco , davide : user;
preclerk ,postclerk , manager : role;
start , inputCustData , intRating

,extRating , signForm : task_name ;
loan_request : msg;

TE ,BPE ,C : agent;

body

ssod( inputCustData , approval );

poto(preclerk , inputCustData );
poto(postclerk , intRating );

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 73/92

poto(manager , approval );
poto(manager , signForm );

hasRole (pierPaolo , preclerk );
hasRole (pierPaolo , postclerk );
hasRole (pierSilvio , manager );
hasRole (marco , manager );
hasRole (davide , preclerk );

TE := fresh ();
new TaskEngine (TE);

BPE := fresh ();
new BankPE (BPE );

C := fresh ();
new Customer (C,BPE );
new LOP;

%% all the sub - entities can be inserted here

Now that we have specified the model, we can describe security properties
to be checked during analysis. For instance, there might be a compliance
rule put in place to avoid fraud, which specifies that sign forms must be
signed only by managers. The goal check_signform_access is a simple
LTL formula to check that.

goals
check_signform_access :

G ( executed (U,R,task(signForm ,TI ,BPI ))
=> hasRole (U, manager ) );

} % end Environment

Notice that the property could actually be violated. We can have an exe-
cution where a manager (e.g. marco) delegates the task signForm to another
user (e.g. davide) who is not a manager, but is still able to execute that task.
Depending on the context, this violation can be negligible or not. It is up to
the modeler to decide and possibly refine his model and/or properties.

5.3 Digital contract signing
The digital contract signing scenario has been described in Deliverable D5.1
(Problem Cases and their Trust and Security Requirements) [5]. For the sake
of conciseness, we simplify this scenario as follows.

Two signers have secure access to a trusted third party, a business portal,

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 74/92

so as to sign a contract. After the three agents have agreed on the terms
of the contract (this phase is not modeled and its successful completion is
assumed), the business portal receives the required information to write down
the contract from the two signers (e.g. their full names and affiliations) and
prepares a contract. In order to handle the signatures, the time stamping,
and store the (signed) contract, the business portal assumes the availability
of a Signature and Proof management Infrastructure (SPI) which, in turn,
relies on the following two agents:

• the certification authority guarantees the identity of the various agents
involved in scenario so that the validity of any certificate generated by
one of the agents can be established by discovering a suitable chain of
certificates (this is much in the spirit of the SPKI/SDSI infrastructure);
and

• the security server handles the requests to store signed copies of a
contract received by the business portal and takes care of checking
whether signatures are associated to identity certificates which have not
been revoked, i.e. such certificates are not in the (last updated version
of the) Certification Revocation List (CRL) issued by the certification
authority (CRLs are also part of the SPKI/SDSI infrastructure).

The time stamper and the archiver (present in the description of the scenario
in [5]) have been abstracted away for the sake of conciseness. However, at
the expense of making the specification longer, we see no particular problems
in specifying them in ASLan v.2. Another simplifying assumption consists of
avoiding to explicitly model private and public keys necessary to support the
SPI infrastructure so as to focus on the control flow of each entity involved
and on the exchange of messages.

The scenario goes as follows. First, the two signers send the necessary
information for building up the contract to the business portal. This cre-
ates the contract and asks to the security server to reserve some space in a
database to store the signed copies. The security server provides the business
portal with a unique identifier of the record of the database where to store
that particular contract. At this point, the business portal signals the avail-
ability of the contract to both signers who ask to have a copy of the contract.
After checking that the contract conforms to what has been negotiated be-
fore, they sign it and send the signed copies to the business portal. In turn,
the business portal forwards the copies to the security server which checks
that the signatures correspond to valid identity certificates by consulting the
most recent version of the CRL published by the certification authority. If
the checks are successful, the signed copies of the certificates are stored in

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 75/92

the previously identified record in the database. The business portal receives
an acknowledgment that the signed copies of the contract have been success-
fully stored (if the case) and then closes the procedure of the digital contract
signing by asking the security server to “seal” the record where the copies
have been stored.

We now describe each entity composing the specification of the case study.
First of all, we (partially) specify the entity SPI for the SPI infrastructure.
It contains messages and common functionalities to handle signatures and
CRLs. The messages signature_ok(s) and signature_ko(s) signal that
the signature s is valid or not, respectively, i.e. it is not or it is in the
currently available version of the CRL (of the certification authority); the
message req_new_crl is used to ask for an updated version of the CRL; and
the message crl_still_ok(a) signals that the CRL belonging to agent a is
still valid. The variable crl_is_expired signals when the currently avail-
able CRL is no more valid and a new one should be computed. The function
sign(c,a) produces a signed copy of the document c by the agent a. The
function verify_signature(a,sc,ca,crl) checks whether the certificates
of an agent a who has produced the signed version sc of a given document
(in our case, a contract) are not in the CRL crl published by an agent ca.
Furthermore, SPI provides predicates to handle identity and action certifi-
cates at the policy level: name_crt(a_1,a_2) corresponds to a certificate
signed by agent a_1 about the identity of a_2, and actn_crt(a_1,e,a_2)
corresponds to a certificate signed by agent a_1 giving a_2 the authorization
to execute a certain action e.
entity SPI {

symbols
%%% Messages
signature_ok , signature_ko : message ;
crl_still_ok (agent) : message ;
req_new_crl : message ;
%%% Variables and functions
crl_is_expired : fact;
sign (info , agent) : info;
verify_signature (agent ,info ,agent ,info) : fact;
%%% Certificates
name_crt (agent , agent) : fact;
actn_crt (agent , info , agent) : fact;

...
}

For the sake of conciseness, the specification of the SPI entity is incomplete as
the meaning of the function and the certificates is not formally defined. We
notice that, for the case study under consideration, there is no need to further
constrain the meaning of predicate certificates as the mere existence of such

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 76/92

certificates allows agents to perform some actions. If an entity specifying
an agent would like to use any of the functionalities supported by the SPI
infrastructure, it is sufficient that it imports SPI.

We discuss now how to specify the certification authority CA. Since we can
have many such authorities, the entity is parameterized with respect to an
agent identifier theCA. At the policy level, CA imports the SPI infrastructure
so that it can create a certificate about its own identity (such a fact is stored
in its policy rules upon instantiation of the entity). At the workflow level,
CA declares a variable new_crl storing the CRL, i.e. a list of certificates
whose validity is expired. The (Boolean) variable crl_is_expired abstracts
away part of the functionalities of the time stamper since sending the value
of the CRL currently stored in new_crl or sending the message that the
previously sent version of the CRL is still valid non-deterministically depends
on crl_is_expired. Since the content of the CRL is public, there is no need
to check the identity of the agent sending in the request.
entity CA(Actor : agent) {

import SPI;

clauses
CA_identity : name_crt (Actor , Actor );

symbols
new_crl : info;
Id : agent;

body {
while (true) {

select {
on ( receive (Id ,?Id. req_new_crl .Actor )) {

if ( crl_is_expired ) {
send(Id ,Actor. new_crl .Id);

}
else {

send(Id ,Actor. crl_still_ok (Actor ).Id);
}

fi
}

}
}

}
}

We are ready to describe the three main entities of the scenario: a signer,
the business portal, and the security server. In the following, we assume
that only two signers are involved. It is interesting to consider the list of

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 77/92

parameters of the entity Signer: Id is the identifier of the signer, BP is the
identifier of the business portal providing the digital contract signing service,
CA is the identifier of the certification authority signing the identity certifi-
cate and handling the CRL, and ContractId is the unique identifier used
by the business portal and the security server to refer to the contract being
signed (this identifier has been given to the contract in the phase of con-
tract negation not modeled here). When creating an instance of the entity
Signer, all its messages and the values of the variables in the workflow refer
to a given contract. In this way, there is no risk of confusion even if the
same agent Id is involved as a signer in more than one signing procedure
as two distinct instances, which differ in the value of ContractId, will be
created. At the policy level, upon creation of an instance of the entity, the
suitable identity certificate is asserted (signer_identity). At the workflow
level, the variable InfoContract stores all the information required to cre-
ate the contract (e.g. name and affiliation of the signer), verify_contract
encapsulates the criteria of the signer to evaluate if the produced contract
is satisfactory (contract_ok stores the result of invoking this function), and
signed_ok tells if the contract has been signed or not.
entity Signer (Actor , BP , CA : agent , ContractId : info) {

import SPI;

clauses
signer_identity : name_crt (CA , Actor );

symbols
InfoContract , Contract : info;
verify_contract (info) : fact;
contract_ok , signed_ok : fact;

init
contract_ok := false;
signed_ok := false;
send(BP ,Actor. ContractId . InfoContract .BP);

body {
while (true) {

select {
% upon reception of a message from the business portal
% of the availability of contract , the signer sends back
% a request to have a copy
on ( receive (BP ,BP. contract_available .Actor) &

name_crt (CA ,BP)) {
send(BP ,Actor. request_contract .BP);

}

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 78/92

% upon reception of a message containing the contract
% from the business portal , the signer checks if the
% contract is conformant to its criteria and , if so ,
% signs it and sends back the signed copy to the
% business portal
on ( receive (BP ,BP.? Contract .Actor) &

name_crt (CA ,BP)) {
contract_ok = verify_contract ( Contract );
if ( contract_ok ) {

contract_signature = sign(Contract ,Actor );
signed_ok := true;
send(BP ,Actor. contract_signature .BP);

}
fi

}
}

}
}

}

Two remarks are in order. First, at the beginning, the sender is required
to forward all the information to create the contract to the business portal.
Second, the identity of the sender of the messages is checked by using suitable
identity certificates (name_crt(CA,BP)).

Now, we consider the business portal BusinessPortal. As above, it is
interesting to look at the parameters of the entity. Similarly to signers, we
have an identifier for the entity itself, two identifiers for two signers (Sig1
and Sig2), the identifier of the certification authority (CA), the identifier of
the service provider (SS), and one for the contract identifier (ContractId).
In this way, each instance of the business portal can handle separately several
contract signing procedures (involving several signers) while possibly using
multiple security servers. At the policy level, we find the identity certificate
(BP_identity). At the workflow level, several variables are declared in or-
der to distinguish between the various steps of the digital contract signing
procedure. The possible behaviors of BusinessPortal are as follows:

1. upon reception of a message from a signer containing part of the in-
formation required to make the contract (identified by ContractId),
the business portal creates the contract (by invoking the function
create_contract whose precise semantics is left unspecified as it plays
no role in our specification) when it has received the information for
the contract from both signers (the variables contract_available,
isFirstSigner and allSigners are used to check this); finally, the
business portal sends the contract to the security server with the re-
quest that a record for it should be created;

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 79/92

2. upon reception of a message from the security server containing the
confirmation that the record for the contract has been created, the
unique record identifier of the record is stored in a local variable for
future use (namely when forwarding signed the copies to the security
server for signature checking and storing the signed copies); then, the
signers are acknowledged that the contract is ready to be signed and
two action certificates are created at the policy level to permit the
signers to obtain a copy of the created contract;

3. upon reception of a message from a signer to get a copy of the con-
tract, the business portal sends it under the assumption that a suitable
contract to perform such an action is available (see previous point);

4. upon reception of a message from a signer containing its signature for
the contract, it stores it in a local variable (sigA or sigB) for future use,
and it forwards it to the security server which is supposed to check its
validity (see the entity SecurityServer below for more on this point);

5. upon reception of a message from the security server that the signa-
tures for the contract of both signers are valid (to detect this situation,
the local variables sigA_verified and sigB_verified are used), the
business portal sends a message to the security server to permanently
store the signed copies of the contract (store(RecordId)).

Notice that the identity of the sender of all messages is checked by using
suitable identity certificates and when the sender asks for obtaining a copy of
the newly created message, it is also checked that suitable action certificates
have been created.
entity BusinessPortal (Actor , Sig1 , Sig2 , CA , SS : agent ,

ContractId : info) {
import SPI;

clauses
BP_identity : name_crt (CA , Actor );

symbols
% flag to establish if it is the first signer or not
isFirstSigner : fact;
% flag to establish if both signers sent infos
allSigners : fact;
Id , IdA : agent;
InfoA , InfoB , Contract : info;
contract_available : fact;
% similar to isFirstSigner but for signed contract
isFirstSigned : fact;

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 80/92

% similar to allSigners but for signed contract
allSigned : fact;
SigA , SigB : info;
record_Id : info;
% flags to establish if signatures have been verified
sigA_verified , sigB_verified : fact;

init
isFirstSigner := true;
allSigners := false;
contract_available := false;
isFirstSigned := true;
allSigned := false;
sigA_verified := false;
sigB_verified := false;

body {
while (true) {

select {
% (1)
on ( receive (Id ,?Id. ContractId .? InfoContract .Actor) &

((Id=Sig1) | (Id=Sig2 )) & name_crt (CA ,Id)) {
if ( isFirstSigner & not( allSigners )) {

IdA := Id;
InfoA := InfoContract ;
isFirstSigner := false;

}
else {

if ((( Id=Sig1) | (Id=Sig2 )) &
name_crt (CA ,Id) & not(Id=IdA) &
not( isFirstSigner ) & not( allSigners )) {

InfoB := InfoContract ;
allSigners := true;
Contract := create_contract (ContractId ,

InfoA ,InfoB );
send(SS ,Actor. Contract .SS);

}
else {

%%% Some error has occurred !
%%% Take necessary actions to recover / signal this
%%% error situation .

}
fi

}
fi

}
% (2)
on ( receive (SS ,SS. contract_created (? rId ). Actor) &

name_crt (CA ,SS)) {

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 81/92

contract_available := true;
record_Id := rId;
send(Sig1 ,Actor. contract_available .Sig1 );
send(Sig2 ,Actor. contract_available .Sig2 );
%%% Adding action certificates for both signers
actn_crt (Actor , request_contract ,Sig1 );
actn_crt (Actor , request_contract ,Sig2 );

}
% (3)
on ( receive (Id ,?Id. request_contract .Actor) &

((Id=Sig1) | (Id=Sig2 )) & name_crt (CA ,Id) &
actn_crt (Actor , request_contract ,Id)) {

if ( contract_available ) { send(Id ,Actor. contract .Id);
}
fi

}
% (4)
on ( receive (Id ,?Id. contract_signature .Actor) &

((Id=Sig1) | (Id=Sig2 )) & name_crt (CA ,Id)) {
if ( contract_available &

isFirstSigned & not( allSigned )) {
sigA = contract_signature ;
% signature validation and storage
send(SS ,Actor. record_Id . contract_signature .SS);
isFirstSigned = false;

}
else {
if (not( isFirstSigned ) & not( allSigned )) {

sigB = contract_signature ;
allSigned = true;
% signature validation and storage
send(SS ,Actor. record_Id . contract_signature .SS);

}
else {

%%% Some error has occurred ! too many signature
%%% Take necessary actions to recover / signal this
%%% situation .
}

fi
}
fi

}

% (5)
on ( receive (SS ,

SS. signature_ok (? contract_signature ). Actor) &
(( contract_signature =SigA) |

( contract_signature =SigB )) & name_crt (CA ,SS)) {
if ( contract_signature =SigA) { sigA_verified := true ;} fi

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 82/92

if ( contract_signature =SigB) { sigB_verified := true; } fi
if ( sigB_verified & sigB_verified ) {

%%% Contract signed and all signatures valid ,
%%% then ask to store the record
send(SS ,Actor.store( Record_Id ).SS);

}
fi

}
}

}
}

}

The parameters of the entity SecurityServer are just two: one for itself
and one for the certification authority. This implies that multiple requests
from the several instances of the business portal or even multiple business
portals can be served by the same instance of the security server. At the
policy level, we find the identity certificate (SS_identity). At the work-
flow level, the variable crl_available stores the local copy (possibly not
updated) of the CRL published by the certification authority and the predi-
cates storeRecord and sealRecord model the database where contracts are
permanently stored: the first argument of the former is the unique record
identifier while the second contains the elements in the tuple of informations
concerning a contract (original and signed versions); sealRecord models the
flag signaling that a contract should be permanently archived. The possible
behaviors of SecurityServer are as follows:

1. upon reception of a message from the business portal to create a record
for a contract, it serves such a request and sends back the record iden-
tifier (associated to the contract) to the business portal;

2. upon reception of a message from the business portal to verify a con-
tract signature (generated by a signer), the security server invokes the
SPI provided functions verify_signature to do this and, if the check
is positive, stores the signed copy to the appropriate record (which is
part of the message together with the signed contract);

3. upon reception of a message from the business portal to permanently
store the record containing the two signed copies of the contract, the
security server puts a permanent lock (sealRecord) on the record;

4. when the variable crl_is_expired (provided by the SPI infrastruc-
ture) non-deterministically becomes true, the security server knows

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 83/92

that its local copy of the CRL is no more valid and he sends a request
to the certification authority to obtain an update;5

5. upon reception of a new version of the CRL (the one published by
the certification authority, hence the importance of the check on the
identity of the sender of the message), the security server stores it in
the local variable crl_available.

entity SecurityServer (Actor , CA : agent) {

import SPI;

clauses
SS_identity : name_crt (CA , Actor );

symbols
%%% The Archiver and the Time Stamper are abstracted
%%% away in this specification and they are encapsulated
%%% in the Security Server .

%%% Archiver ( semantics of functions left unspecified )
% create a record for a certain agent and a certain
% contract (2nd arg)
createRecord (agent , info) : info;
% store a piece of information (2nd arg) in a certain
% record (1st arg)
storeRecord (info , info) : fact;
% puts a permanent lock on a certain record (arg)
sealRecord (info) : fact;

%%% Local variable storing copy of the CRL published by CA
crl_available : info;
%%% Local variable storing the newly created record id
record_Id : info;
%%% Local copy of the contract
Contract : info;
%%% Local variable storing the identity of a signer
Id : agent;

body {
while (true) {

select {
% (1)
on ( receive (BP ,BP.? Contract .Actor) &

5In practice, the CRL comes with an expiration date. So, the value of the variable
crl_is_expired will simply be established by looking at the CRL and the local time of
the server.

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 84/92

name_crt (CA ,BP)) {
record_Id = createRecord (BP , Contract );
% storing the original version of the contract so as
% to ensure integrity
storeRecord (record_Id , Contract );
send(BP ,Actor. contract_created ( record_Id ).BP);

}
% (2)
on ( receive (BP ,

BP. Record_Id .? contract_signature .?Id.Actor) &
storeRecord (record_Id , Contract ) &
name_crt (CA ,BP)) {

if ( verify_signature (Id , contract_signature ,
CA , crl_available )) {

storeRecord (Record_Id , contract_signature )
send(BP ,Actor. signature_ok ( contract_signature ).BP);

}
else {

send(BP ,Actor. signature_ko ( contract_signature ).BP);
}
fi

}
% (3)
on ( receive (BP ,BP.store (? Record_Id ). Actor) &

name_crt (CA ,BP)) {
sealRecord ( Record_Id );

}
% (4)
on ( crl_is_expired ) {

send(CA ,Actor. req_new_crl .CA);
}
% (5)
on ( receive (CA ,CA. new_crl .Actor) &

name_crt (CA ,CA)) {
crl_available := new_crl ;

}
}

}
}

}

Finally, we are able to describe the entity Environment which allows us to
create the instances of the previous entity to specify a scenario that is quite
similar to that described in D5.1 (except for the absence of the Archiver and
the Time Stamper).
entity Environment {

types

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 85/92

info < message

symbols
%%% Messages
contract_available , request_contract : message ;
contract_created (info) : message ;
store (info , info) : message ;

%%% Identifiers for the scenario
%%% Two signers
signer1 : agent;
signer2 : agent;
%%% Business Portal
bp : agent;
%%% Security Server
ss : agent;
%%% Certification Authority
theCA : agent;
%%% Identifier for the contract
ci : info;

init
%%% Creating two instances of Signer
new Signer (signer1 , bp , theCA , ci);
new Signer (signer2 , bp , theCA , ci);

%%% Creating an instance of the Business Portal , ...
new BusinessPortal (bp , signer1 , signer2 , theCA , ss , ci);
%%% ... of the Security Server , and ...
new SecurityServer (ss , theCA );
%%% ... of the Certification Authority
new CA(theCA );

%%% Integrity invariant property to verify at system level
goals

integrity :
G ( forall c_orig , c_sig1 , c_sig2 .

( storeRecord (ci , c_orig ) & storeRecord (ci , c_sig1 ) &
storeRecord (ci , c_sig2 ) & sealRecord (ci))

=>
( c_sig1 =sign(c_orig , signer1 ) &

c_sig2 =sign(c_orig , signer2 ))
)

}

In the goal section we have specified the following integrity property
(taken from [5]): the security server must ensure that the document that
has been signed and uploaded by the user is the same as the one generated
by the portal and submitted to the user for signature.

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 86/92

5.4 Identity Mixer
As a final example, we consider an excerpt from the specification of the Iden-
tity Mixer case study. This illustrates the use of interactive zero-knowledge
proofs and pseudonymous channels in ASLan, as well as their composition
with a protocol implementing these channels (all concepts are as introduced
in deliverable D3.3 [4], but see also [14] for further details). Note that Iden-
tity Mixer requires a particular property that we do not model in the current
formalization of channels: anonymity. This can be achieved, for instance,
by a onion-routing [8]. The pseudonymous channels that we consider here,
in contrast, provide us with the guarantee of a secure channel between an
unauthenticated (thus pseudonymous) user and a server. This is crucial as
the server must rely on the fact that all messages that appear to come from
the same user indeed do, and all answers go back to that user.

Identity Mixer has its own kind of (cryptographic) pseudonyms that are
different from the lower-level (channel-related) pseudonyms we have consid-
ered so far. For distinction, we will call the idemix pseudonyms just nyms.
A nym is cryptographically linked to a user’s master secret that we denote
masec(U) for a user’s real name U. Nyms are used when showing and prov-
ing credentials, and thus act for similar purposes as a user name in a non-
anonymous setting. For unlinkeability, a user may create new nyms with a
server at any time. We consider an exchange that allows the user to create
a new nym. To that end, we define two entities for setting up a new nym, a
user and a server entity.
masec(agent ): nat; %% the master secret of a user
spk(msg ,msg ): msg %% abstraction of interactive zero - knowledge

%% proofs (see D3 .3)
commit (agent ,nat ,nat ): msg %% commitment function
ptag(nat ,agent ,nat ,nat ): msg %% constructor for pseudonym

entity UserCreateNym (Actor ,O: agent ){
symbols

R_1 ,R_2 : nat;
C,P : msg;

body{
R_1 := fresh ();
C := commit (O,R_1 ,masec(Actor ));

[Actor] *->* O: spk (( masec(Actor ). R_1),C)
%% interactive zero - knowledge proof that C is a commitment
%% of the appropriate form commit (O,R_1 ,X) and that the
%% user knows X and R_1

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 87/92

O *->* [Actor ]: ?R_2

P := ptag(masec(Actor),O,R_1 ,R_2)
%% computing the pseudonym of the user

add(myNyms ,(P.O))
%% the nyms of Actor contain now also the fact that P is
%% a nym for use with O

[Actor] *->* O: spk (( masec(Actor ). R_1),P)
%% interactive zero - knowledge proof that P is a pseudonym of
%% the appropriate form and that the user knows X and R_1

}
}

entity OrgCreateNym (Actor: agent ){
symbols

PU : agent;
R_2 : nat;
C,P : msg;
%% Note that the following variables represent values
%% that the server cannot actually see , but that are
%% involved with the zero - knowledge proof:
_masec , _R_1 :: nat;

body{
?PU *->* Actor: spk ((? _masec .? _R_1), commit (Actor ,_R_1 , _masec ))
%% accept interactive zero - knowledge proof as valid when
%% receiving term of this format for values _masec and _R_1
%% that "Actor" does not learn.

R_2 := fresh ();

Actor *->* PU: R_2

PU *->* Actor: spk (( _masec ._R_1),ptag(_masec ,Actor ,_R_1 ,R_2 ))

add(myTags ,ptag(_masec ,Actor ,_R_1 ,R_2 ))
}

}

As explained in D3.3, we can model a non-interactive zero-knowledge
proof as a function of the involved terms, including secrets, combined with
appropriate pattern matching on the receiver side. Thus, to understand the
formulation of this example in ASLan requires one to consider the combina-
tion of corresponding send and receive actions, in particular. First the user
sends a proof about a commitment, namely spk((masec(Actor).R_1),C)

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 88/92

where masec(Actor) and R_1 are secrets that are not revealed by the proof,
and C is a commitment. The server receives this as

spk((_masec._R_1),commit(Actor,_R_1,_masec))

i.e. the server will accept only those commitments that have the form

commit(Actor,_R_1,_masec))

where Actor is the server’s name and where the values _R_1 and _masec
must be the same as in the first argument of the spk term, proving that
the prover indeed knows these two values. To clarify that the verifier of the
proof does not learn these values, we have denoted these variables with an
underscore on the server side. In the protocol, the server replies with a fresh
number R_2 and the user forms the new nym P of the form

ptag(masec(Actor),O,R_1,R_2) ,

stores this and sends it to the server along with the proof that it has the
appropriate format and contains the correct arguments, in particular the
same master secret as the commitment before.

This procedure relies on the assumption of pseudonymous secure channels
between the user and the organization server. A simple way to implement
these assumed pseudonymous channels could be TLS without client authen-
tication, or even simpler, a Diffie-Hellman key-exchange without client au-
thentication.6 The client side of that looks as follows in ASLan, and the
server side is analogous:
entity DHClient (Actor , O: agent , Payload : payload ){

symbols
X : nat;
GX ,GY ,K : msg;

body{
X:= fresh ()
GX:= exp(g,X)
Actor -> O: GX
O *-> Actor: ?GY %% the server O must be authenticated to

%% obtain a secure channel
K := exp(GY ,X)
Actor -> O: {| Payload |}K

}
goal: [Actor] *->* O: Payload

}

6Note that these are not sufficient for providing anonymity; while the privacy aspect is
central to Identity Mixer in general, we do not go into further details of modeling it here.

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 89/92

Here, the client sends its half-key GX:=exp(g,X) on an insecure channel
(denoted simply by ->) and the server replies by sending his half-key GY on
an authentic channel. The full key is then K := exp(GY,X) and the client
uses it to symmetrically encrypt a Payload she sends to the server. We thus
have the goal that the payload message is transmitted on a pseudonymous
secure channel.

The compositionality result in [4, 14] allows us to conclude that, given
that the key exchange indeed satisfies its goal (which it does) and given
that it is horizontally and vertically composable with the application service
(which is also the case here), we can indeed realize a transmission on the
pseudonymous secure channel by the Diffie-Hellman key exchange.

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 90/92

6 Conclusion
We have presented version 2 of the language ASLan, whose semantics is
defined by translation to the more low-level ASLan v.1.1. Both of these
languages are going to be supported by the AVANTSSAR Platform that
we are developing. They allow us to formally specify services and their
policies in a way that is close to what can be achieved with specification
languages for security protocols and web services. ASLan v.2 has the look
and feel of procedural and object-oriented programming languages, and thus
can be employed by users who are not experts of formal protocol/service
specification languages. We demonstrated its flexibility and expressiveness
by considering four case studies from Deliverable D5.1, focusing in particular
on the modularity aspects that allow us to consider static service and policy
composition.

As discussed in the description of work (Annex I), we have planned the
definition and use of ASLan in a flexible way, in the sense that ASLan will
be continuously extended during the course of the project, in order to cover
various features needed by the case studies and the industrial-strength ap-
plications that we will consider. In particular, ASLan v.3, the final version
of the language, to be delivered in D2.3, will include dynamic service and
policy composition, so that the language and the whole AVANTSSAR Plat-
form will be applicable for the full-fledged specification and analysis of the
case studies.

As future work, in addition to the language extensions towards ASLan
v.3, we will also consider optimizations of the translation from the high-
level to the low-level language (as presented in this deliverable), in order to
produce formal models that allow for a more efficient automated analysis.

FP7-ICT-2007-1
Project No. 216471



D2.2: ASLan v.2 91/92

References
[1] A. Armando, R. Carbone, and L. Compagna. LTL Model Checking for

Security Protocols. In Proceedings of the 20th IEEE Computer Secu-
rity Foundations Symposium (CSF20), pages 385–396. IEEE Computer
Society Press, 2007.

[2] N. Asokan, V. Shoup, and M. Waidner. Asynchronous protocols for
optimistic fair exchange. In Proceedings of the IEEE Symposium on
Research in Security and Privacy, pages 86–99, 1998. citeseer.nj.
nec.com/asokan98asynchronous.html.

[3] AVANTSSAR. Deliverable 2.1: Requirements for modelling and ASLan
v.1. Available at http://www.avantssar.eu, 2008.

[4] AVANTSSAR. Deliverable 3.3: Attacker models. Available at http:
//www.avantssar.eu, 2008.

[5] AVANTSSAR. Deliverable 5.1: Problem cases and their trust and secu-
rity requirements. Available at http://www.avantssar.eu, 2008.

[6] AVISPA. Deliverable 2.1: The High-Level Protocol Specification Lan-
guage. http://www.avispa-project.org, 2003.

[7] AVISPA. Deliverable 2.3: The Intermediate Format. http://www.
avispa-project.org, 2003.

[8] J. Camenisch and A. Lysyanskaya. A Formal Treatment of Onion Rout-
ing. In Proceedings of Crypto’05, LNCS 3621, pages 169–187. Springer-
Verlag, 2005.

[9] J. Heather, G. Lowe, and S. Schneider. How to prevent type flaw at-
tacks on security protocols. In Proceedings of The 13th Computer Secu-
rity Foundations Workshop (CSFW’00). IEEE Computer Society Press,
2000.

[10] G. Lowe. A hierarchy of authentication specifications. In Proceedings of
the 10th IEEE Computer Security Foundations Workshop (CSFW’97),
pages 31–43. IEEE Computer Society Press, 1997.

[11] G. Lowe. Casper: a Compiler for the Analysis of Security Protocols.
Journal of Computer Security, 6(1):53–84, 1998. http://web.comlab.
ox.ac.uk/oucl/work/gavin.lowe/Security/Casper/.

FP7-ICT-2007-1
Project No. 216471

citeseer.nj.nec.com/asokan98asynchronous.html
citeseer.nj.nec.com/asokan98asynchronous.html
http://www.avantssar.eu
http://www.avantssar.eu
http://www.avantssar.eu
http://www.avantssar.eu
http://www.avispa-project.org
http://www.avispa-project.org
http://www.avispa-project.org
http://web.comlab.ox.ac.uk/oucl/work/gavin.lowe/Security/Casper/
http://web.comlab.ox.ac.uk/oucl/work/gavin.lowe/Security/Casper/


D2.2: ASLan v.2 92/92

[12] U. M. Maurer and P. E. Schmid. A calculus for security bootstrapping
in distributed systems. Journal of Computer Security, 4(1):55–80, 1996.

[13] S. Mödersheim. Models and Methods for the Automated Analysis of
Security Protocols. PhD Thesis, ETH Zurich, 2007. ETH Dissertation
No. 17013.

[14] S. Mödersheim and L. Viganò. Secure pseudonymous channels. In
Proceedings of Esorics’09. Springer-Verlag, 2009 (to appear). Extended
version: Technical Report RZ3724, IBM Zurich Research Lab, 2008,
domino.research.ibm.com/library/cyberdig.nsf.

FP7-ICT-2007-1
Project No. 216471

domino.research.ibm.com/library/cyberdig.nsf

	Introduction
	ASLan v.1.1: an extension of ASLan v.1
	Typing
	Universally Quantified Horn Clauses
	Micro and Macro Steps

	ASLan v.2 gentle introduction and syntax 
	Entities
	Declarations
	Terms
	Channels
	Statements
	Names
	Extended Backus-Naur Form
	Prelude

	ASLan v.2 semantics 
	Preprocessing
	Translation of entities
	Translation of Types and Symbols
	Translation of Horn Clauses
	Translation of Equalities
	Representing the Control Flow
	Step Compression
	Translation of Statements
	Grouping
	Variable assignment
	Generation of fresh values
	Entity instantiation
	Symbolic entity instantiation
	Transmission statements
	Fact introduction
	Fact retraction
	Branch
	Loop
	Select
	Assert

	Translation of Guards
	Translation of Terms
	Translation of the Body Section
	Translation of Transmission Events
	Translation of Goals
	Channels as Goals


	ASLan v.2 examples 
	Car registration
	Loan Origination Process
	Digital contract signing
	Identity Mixer

	Conclusion

